Skip to main content

Advertisement

Log in

Nanobiomaterials in drug delivery: from science to applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Recently, technologies in designing novel drug delivery strategies have evolved to overcome challenges like biological barriers. Nanobiomaterials have shown significant potential as efficient drug carriers due to their variable sizes and characteristics. Additionally, nanobiomaterials have been applied in other fields of medicine, such as molecular imaging, detection of disease markers, vaccine development, and treatment of many body organs, such as the skin and nervous system. Nanobiomaterials are composed of different classes with unique properties that allow for more targeted and comprehensive performance at different sites. Nanoparticles are classified based on their structures and have been utilized in drug delivery systems to treat various disorders. Herein, the threats of applying these materials as drug carriers and the future of nanomaterials in medicine have been described. Our research has gone beyond explaining the potentials of highly applied nanoparticles used in drug delivery systems and has attempted to give insights about what measurements and modifications must be done in the case of nanobiomaterials to bring this multifaceted science into widespread utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GNPs:

Gold nanoparticles

PAMAM:

Neutral hydroxyl-terminated polyamidoamine

PM:

Polymeric micelles

CRC:

Critical micelle concentration

QD:

Quantum dots

ECM:

Extracellular matrix

MSC:

Mesenchymal stem cells

References

  1. Abd Elkodous M, Olojede SO, Morsi M, El-Sayyad GS (2021) Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Adv 11(43):26463–26480. https://doi.org/10.1039/D1RA04835J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140

    Article  CAS  PubMed  Google Scholar 

  3. Almeida B, Nag OK, Rogers KE, Delehanty JB (2020) Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules (Basel, Switzerland) 25(23):5672. https://doi.org/10.3390/molecules25235672

    Article  CAS  PubMed  Google Scholar 

  4. Altavilla C, Ciliberto E (2011) Inorganic nanoparticles: synthesis, applications, and perspectives. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Babaie S, Bakhshayesh ARD, Ha JW, Hamishehkar H, Kim KH (2020) Invasome: a novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel, Switzerland) 10(2):341. https://doi.org/10.3390/nano10020341

    Article  CAS  PubMed  Google Scholar 

  6. Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA (2020) Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Anal Chem 131:116013. https://doi.org/10.1016/j.trac.2020.116013

    Article  CAS  Google Scholar 

  7. Bakhshandeh B, Ranjbar N, Abbasi A et al (2023) Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 8(2):e10383. https://doi.org/10.1002/btm2.10383

    Article  CAS  PubMed  Google Scholar 

  8. Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I (2011) Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol Sin 32(5):626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N (2012) A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64(5):523–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A (2022) New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. Chemosphere 287:132243

    Article  CAS  PubMed  Google Scholar 

  11. Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z (2017) Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 33(2):144–172

    Article  CAS  PubMed  Google Scholar 

  12. Cevc G (1996) Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13(3–4):257–388. https://doi.org/10.1615/critrevtherdrugcarriersyst.v13.i3-4.30

    Article  CAS  PubMed  Google Scholar 

  13. Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Chen H (2019) Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev 25(1):14–29. https://doi.org/10.1089/ten.TEB.2018.0119

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chowdhury NK, Deepika, Choudhury R, Sonawane GA, Mavinamar S, Lyu X, Chang CM (2021) Nanoparticles as an effective drug delivery system in COVID-19. Biomed Pharmacother 143:112162. https://doi.org/10.1016/j.biopha.2021.112162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  16. Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, Yuan M (2020) Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 7:489–489. https://doi.org/10.3389/fbioe.2019.00489

    Article  PubMed  PubMed Central  Google Scholar 

  17. Douroumis D, Fahr A (2012) Drug delivery strategies for poorly water-soluble drugs. John Wiley & Sons, Chichester, West Sussex

    Google Scholar 

  18. Ds A, Mj S (2016) Nanotechnology: the risks and benefits for medical diagnosis and treatment. J Nanomed Nanotechnol. https://doi.org/10.4172/2157-7439.1000e143

    Article  Google Scholar 

  19. Fanun M (2010) Colloids in drug delivery. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  20. Ge X, Wei M, He S, Yuan W-E (2019) Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 11(2):55. https://doi.org/10.3390/pharmaceutics11020055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gelain F (2008) Novel opportunities and challenges offered by nanobiomaterials in tissue engineering. Int J Nanomed 3(4):415–424

    Article  CAS  Google Scholar 

  22. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18(3):241–268. https://doi.org/10.1163/156856207779996931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159(3):312–323. https://doi.org/10.1016/j.jconrel.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  24. Gonsalves KE (2008) Biomedical nanostructures. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  25. Gu J, Hu W, Song Z-P, Chen Y-G, Zhang D-D, Wang C-Q (2016) Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway. Front Phys. https://doi.org/10.3389/fphys.2016.00104

    Article  Google Scholar 

  26. Hauser M, Li G, Nowack B (2019) Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J Nanobiotechnol 17(1):56–56. https://doi.org/10.1186/s12951-019-0489-8

    Article  Google Scholar 

  27. Helary C, Desimone MF (2015) Recent advances in biomaterials for tissue engineering and controlled drug delivery. Curr Pharm Biotechnol 16(7):635–645. https://doi.org/10.2174/138920101607150427112208

    Article  CAS  PubMed  Google Scholar 

  28. Holzapfel BM, Rudert M, Hutmacher DW (2017) Scaffold-based bone tissue engineering. Orthopade 46(8):701–710. https://doi.org/10.1007/s00132-017-3444-0

    Article  CAS  PubMed  Google Scholar 

  29. Hurst SJ (2011) Biomedical nanotechnology: methods and protocols. Humana Press, New York

    Book  Google Scholar 

  30. Jackson CB, Farzan M, Chen B, Choe H (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x

    Article  CAS  PubMed  Google Scholar 

  31. Jahanafrooz Z, Bakhshandeh B, Shirzadi E (2023) Comparative evaluation of lipofectamine and dendrimer for transfection of short RNA into human T47D and MCF-10A cell lines. Adv Pharm Bull 13(2):385–392. https://doi.org/10.34172/apb.2023.022

    Article  CAS  Google Scholar 

  32. Jahanafrooz Z, Motamed N, Bakhshandeh B (2017) Effects of miR-21 downregulation and silibinin treatment in breast cancer cell lines. Cytotechnology 69(4):667–680. https://doi.org/10.1007/s10616-017-0076-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jain S, Jain V, Mahajan SC (2014) Lipid based vesicular drug delivery systems. Adv Pharm 2014:574673. https://doi.org/10.1155/2014/574673

    Article  Google Scholar 

  34. Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O (2019) Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Front Bioeng Biotechnol 7:261–261. https://doi.org/10.3389/fbioe.2019.00261

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77. https://doi.org/10.3389/fphar.2014.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joseph X, Akhil V, Arathi A, Mohanan PV (2022) Nanobiomaterials in support of drug delivery related issues. Mater Sci Eng B 279:115680. https://doi.org/10.1016/j.mseb.2022.115680

    Article  CAS  Google Scholar 

  37. Kanazawa T, Sugawara K, Tanaka K, Horiuchi S, Takashima Y, Okada H (2012) Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG–PCL nanomicelles. Eur J Pharm Biopharm 81(3):470–477. https://doi.org/10.1016/j.ejpb.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  38. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25(1):307–320. https://doi.org/10.1080/10717544.2018.1428243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1(4):374–380. https://doi.org/10.4103/0110-5558.76435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72(1–3):191–202. https://doi.org/10.1016/s0168-3659(01)00275-9

    Article  CAS  PubMed  Google Scholar 

  41. Kumar SSD, Abrahamse H (2020) Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications. Int J Mol Sci 21(18):6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lakshmanan R, Maulik N (2018) Graphene-based drug delivery systems in tissue engineering and nanomedicine. Can J Physiol Pharmacol 96(9):869–878. https://doi.org/10.1139/cjpp-2018-0225

    Article  CAS  PubMed  Google Scholar 

  43. Lee JW, Foote RS (2009) Micro and nano technologies in bioanalysis: methods and protocols. Humana Press, Dordrecht, New York

    Google Scholar 

  44. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep 38(2):611–624. https://doi.org/10.3892/or.2017.5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lungu II, Grumezescu AM, Volceanov A, Andronescu E (2019) Nanobiomaterials used in cancer therapy: an up-to-date overview. Molecules (Basel, Switzerland) 24(19):3547. https://doi.org/10.3390/molecules24193547

    Article  CAS  PubMed  Google Scholar 

  46. Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Sun Y (2020) Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale 12(29):15512–15527. https://doi.org/10.1039/D0NR02397C

    Article  CAS  PubMed  Google Scholar 

  47. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150. https://doi.org/10.4103/0975-7406.130965

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M (2018) Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 128:84–100. https://doi.org/10.1016/j.addr.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  49. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed 12:5421–5431. https://doi.org/10.2147/IJN.S138624

    Article  CAS  Google Scholar 

  50. Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE (2021) Modern world applications for nano-bio materials: tissue engineering and COVID-19. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.597958

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mikušová V, Mikuš P (2021) Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci 22(17):9652

    Article  PubMed  PubMed Central  Google Scholar 

  52. Opatha SAT, Titapiwatanakun V, Chutoprapat R (2020) Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 12(9):855. https://doi.org/10.3390/pharmaceutics12090855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park K (2013) Biomaterials for cancer therapeutics: diagnosis, prevention and therapy. Woodhead Publishing, Oxford

    Google Scholar 

  54. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71–71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  55. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65(5):703–718. https://doi.org/10.1016/j.addr.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  56. Puttappa N, Kumar RS, Kuppusamy G, Radhakrishnan A (2019) Nano-facilitated drug delivery strategies in the treatment of plasmodium infection. Acta Trop 195:103–114. https://doi.org/10.1016/j.actatropica.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  57. Rana D, Ramasamy K, Leena M, Jiménez C, Campos J, Ibarra P, Ramalingam M (2016) Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 32(3):554–567. https://doi.org/10.1002/btpr.2262

    Article  CAS  PubMed  Google Scholar 

  58. Rolley N, Bonnin M, Lefebvre G, Verron S, Bargiel S, Robert L, Calvignac B (2021) Galenic lab-on-a-chip concept for lipid nanocapsules production. Nanoscale 13(27):11899–11912. https://doi.org/10.1039/D1NR00879J

    Article  PubMed  Google Scholar 

  59. Sapkota R, Dash AK (2021) Liposomes and transferosomes: a breakthrough in topical and transdermal delivery. Ther Deliv 12(2):145–158. https://doi.org/10.4155/tde-2020-0122

    Article  CAS  PubMed  Google Scholar 

  60. Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan RM (2018) Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics 8(20):5529–5547. https://doi.org/10.7150/thno.29039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharma AK, Keservani RK (2019) Dendrimers for drug delivery. Apple Academic Press, Oakville, Waretown

    Google Scholar 

  62. Shukla A, Mishra V, Kesharwani P (2016) Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discovery Today 21(6):888–899. https://doi.org/10.1016/j.drudis.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  63. Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E (2017) Nanobiomaterials’ applications in neurodegenerative diseases. J Biomater Appl 31(7):953–984. https://doi.org/10.1177/0885328216659032

    Article  CAS  PubMed  Google Scholar 

  64. Soloviev M (2012) Nanoparticles in biology and medicine: methods and protocols. Humana Press/Springer, New York

    Book  Google Scholar 

  65. Verma P, Pathak K (2010) Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res 1(3):274–282. https://doi.org/10.4103/0110-5558.72415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M (2016) Organic nanomaterials and their applications in the treatment of oral diseases. Molecules (Basel, Switzerland) 21(2):207. https://doi.org/10.3390/molecules21020207

    Article  CAS  PubMed  Google Scholar 

  67. Wang W, Lu K-J, Yu C-H, Huang Q-L, Du Y-Z (2019) Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol 17(1):82–82. https://doi.org/10.1186/s12951-019-0514-y

    Article  CAS  Google Scholar 

  68. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037. https://doi.org/10.1016/s1734-1140(12)70901-5

    Article  CAS  PubMed  Google Scholar 

  69. Zarrintaj P, Bakhshandeh B, Saeb MR, Sefat F, Rezaeian I, Ganjali MR, Mozafari M (2018) Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomater 72:16–34. https://doi.org/10.1016/j.actbio.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  70. Zeineldin R (2017) Cancer nanotechnology: methods and protocols. Humana Press, New York

    Book  Google Scholar 

  71. Ziraksaz Z, Nomani A, Soleimani M, Bakhshandeh B, Arefian E, Haririan I, Tabbakhian M (2013) Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification. Int J Pharm 448(1):231–238. https://doi.org/10.1016/j.ijpharm.2013.03.035

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnaz Bakhshandeh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, N., Bakhshandeh, B., Dehghani, Z. et al. Nanobiomaterials in drug delivery: from science to applications. Polym. Bull. 81, 5823–5838 (2024). https://doi.org/10.1007/s00289-023-05006-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05006-x

Keywords

Navigation