Skip to main content
Log in

Effect of production method on the properties of PVA/Ag–Cu composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper presents comparative data on the structural, thermal, and mechanical characteristics, the work of adhesion as well as the anti-mold activity of composites based on PVA and Ag–Cu structures. A one-stage method for obtaining polymer composites with Ag–Cu using underwater pulsed plasma is considered. Two- and three-stage chemical methods for obtaining Ag–Cu structures with/without using the stabilizer (chitosan and polyvinylpyrrolidone) are also compared. The incorporation of the filler into the polymer matrix is confirmed by XRD patterns and FTIR spectroscopy data. The results of thermal and mechanical tests have shown that the synthesis method and the nature of the stabilizer allow the creation of more platy composites. The introduction of Ag–Cu fillers increases the resistance to UV radiation and changes the work of adhesion. The method of production, the concentration of the filler, and the nature of the stabilizer affect the anti-mold activity of the composites. Analysis of obtained results, PVA/Ag–Cu composites can be considered promising food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cutter CN (2002) Microbial control by packaging: a review. Crit Rev Food Sci Nutr 42(2):151–161

    PubMed  Google Scholar 

  2. Conte A, Angiolillo L, Mastromatteo M, Del Nobile A (2013) Technological options of packaging to control food quality. Food Ind 16:354–379

    Google Scholar 

  3. Hasan M, Chong EWN, Jafarzadeh S, Paridah MT, Gopakumar DA, Tajarudin HA, Thomas S, Abdul Khalil HPS (2019) Enhancement in the physico-mechanical functions of seaweed biopolymer film via embedding fillers for plasticulture application—a comparison with conventional biodegradable mulch film. Polymers 11(2):210

    Google Scholar 

  4. Pagno CH, Costa TM, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Flôres SH (2015) Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem 173:755–762

    CAS  PubMed  Google Scholar 

  5. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    CAS  PubMed  Google Scholar 

  6. Said NS, Sarbon NM (2022) Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: a review. Membranes 12(5):442

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Haghighi H, Licciardello F, Fava P, Siesler HW, Pulvirenti A (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26:100551

    Google Scholar 

  8. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56(12):1307–1344

    CAS  Google Scholar 

  9. Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161(4102):929–930

    CAS  Google Scholar 

  10. Dash KK, Deka P, Bangar SP, Chaudhary V, Trif M, Rusu A (2022) Applications of inorganic nanoparticles in food packaging: a comprehensive review. Polymers 14(3):521

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Jafarzadeh S, Jafari SM (2021) Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr 61(16):2640–2658

    CAS  PubMed  Google Scholar 

  12. Chadha U, Bhardwaj P, Selvaraj SK, Arasu K, Praveena S, Pavan A, Paramasivam V (2022) Current trends and future perspectives of nanomaterials in food packaging application. J Nanomater 2022:1–32

    Google Scholar 

  13. Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96(1):233–239

    CAS  PubMed  Google Scholar 

  14. Mathew S, Snigdha S, Mathew J, Radhakrishnan EK (2019) Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag Shelf Life 19:155–166

    Google Scholar 

  15. Aktitiz İ, Varol R, Akkurt N, Saraç MF (2020) In-situ synthesis of 3D printable mono-and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym Test 90:106724

    CAS  Google Scholar 

  16. Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Vidić J (2021) Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 20(3):2428–2454

    PubMed  Google Scholar 

  17. Vasile C, Râpă M, Ştefan M, Stan M, Macavei S, Darie-Niţă RN, Brebu M (2017) New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polym Lett 11(7):531–544

    CAS  Google Scholar 

  18. Kubacka A, Ferrer M, Fernández-García M, Serrano C, Cerrada ML, Fernández-García M (2011) Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: optimization of antimicrobial properties. Appl Cat B: Environ 104(3–4):346–352

    CAS  Google Scholar 

  19. Chen X, Ku S, Weibel JA, Ximenes E, Liu X, Ladisch M, Garimella SV (2017) Enhanced antimicrobial efficacy of bimetallic porous CuO microspheres decorated with Ag nanoparticles. ACS Appl Mater Interfaces 9(45):39165–39173

    CAS  PubMed  Google Scholar 

  20. Krakor E, Saniternik S, Gessner I, Frohnhoven R, Wilhelm M, Drexelius M, Mathur S (2022) Hollow mesoporous silica capsules loaded with copper, silver, and zinc oxide nanoclusters for sustained antibacterial efficacy. J Am Ceram Soc 105(3):1685–1696

    CAS  Google Scholar 

  21. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103(1):125–133

    CAS  Google Scholar 

  22. Abd El-Kader MFH, Elabbasy MT, Ahmed MK, Menazea AA (2021) Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J Mater Res Technol 13:291–300

    CAS  Google Scholar 

  23. Abdali K, Abass KH, Al-Bermany E, Al-Robayi EM, Kadim AM (2022) Morphological, optical, electrical characterizations and anti-Escherichia Coli bacterial efficiency (AECBE) of PVA/PAAm/PEO polymer blend doped with silver NPs. Nano Biomed Eng 14(2):114–122

    CAS  Google Scholar 

  24. Sirotkin NA, Gurina DL, Khlyustova AV, Costerin DY, Naumova IK, Titov VA, Agafonov AV (2021) Experimental and computational investigation of polylactic acid/silver-NP nanocomposite with antimicrobial activity prepared by plasma in liquid. Plasma Process Polym 18(2):2000169

    CAS  Google Scholar 

  25. Sirotkin N, Khlyustova A, Costerin D, Naumova I, Titov V, Agafonov A (2022) Applications of plasma synthesized ZnO, TiO2, and Zn/TiOx nanoparticles for making antimicrobial wound-healing viscose patches. Plasma Process Polym 19(1):2100093

    CAS  Google Scholar 

  26. Sirotkin N, Khlyustova A, Costerin D, Naumova I, Kalazhokov Z, Kalazhokov K, Titov V, Agafonov A (2023) Synthesis of chitosan/PVA/metal oxide nanocomposite using underwater discharge plasma: characterization and antibacterial activities. Polym Bull 80(5):5655–5674

    CAS  Google Scholar 

  27. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol 2014:510246

    Google Scholar 

  28. Rajput N (2015) Methods of preparation of nanoparticles—a review. Int J Adv Eng Technol 7(6):1806

    Google Scholar 

  29. Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):223–245

    CAS  Google Scholar 

  30. Sirohi S, Singh R, Jain N, Pani B, Dutt K, Nain R (2017) Synthesis and characterization of multifunctional ZnO/polyester green composite films. J Polym Res 24:1–10

    CAS  Google Scholar 

  31. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26:1–10

    Google Scholar 

  32. Khlyustova A, Sirotkin N, Kraev A, Agafonov A, Titov V (2022) Composites based on PVA and Al–Zn structures with excellent mechanical properties. Polym Compos 43(6):4029–4037

    CAS  Google Scholar 

  33. Mallick S, Sanpui P, Ghosh SS, Chattopadhyay A, Paul A (2015) Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Adv 5(16):12268–12276

    CAS  Google Scholar 

  34. Paszkiewicz M, Gołąbiewska A, Rajski Ł, Kowal E, Sajdak A, Zaleska-Medynska A (2016) Synthesis and characterization of monometallic (Ag, Cu) and bimetallic Ag-Cu particles for antibacterial and antifungal applications. J Nanomater 2016:6

    Google Scholar 

  35. Patil SP, Patil SP, Puri VR, Jadhav LD (2013) Synthesis and characterization of pure Cu and CuO nanoparticles by solution combustion synthesis. AIP Conf Proc 1536(1):1260–1261

    CAS  Google Scholar 

  36. Ram BP, Hart LP, Shotwell OL, Pestka JJ (1986) Enzyme-linked immunosorbent assay of Aflatoxin B1 in naturally contaminated corn and cotton seed. J Assoc Off Anal Chem 69(5):904–907

    CAS  PubMed  Google Scholar 

  37. Rashidova SS, Milusheva RY (2009) Chitin and Chitosan Bombyx mori. Tashkent, FAN

  38. Huang Y, Wu F, Zhou Z, Zhou L, Liu H (2020) Fabrication of fully covered Cu–Ag core–shell nanoparticles by compound method and anti-oxidation performance. Nanotechnol 31(17):175601

    CAS  Google Scholar 

  39. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113

    CAS  Google Scholar 

  40. Bragg WL (1934) The crystalline state:, vol I. The Macmillan Company, New York

    Google Scholar 

  41. Halasa AF, Wathen GD, Hsu WL, Matrana BA, Massie JM (1991) Relationship between interchain spacing of amorphous polymers and blend miscibility as determined by wide-angle X-ray scattering. J Appl Polym Sci 43(1):183–190

    CAS  Google Scholar 

  42. Arbelaiz A, Fernández B, Valea A, Mondragon I (2006) Mechanical properties of short flax fibre bundle/poly (ε-caprolactone) composites: Influence of matrix modification and fibre content. Carbohydr Polym 64(2):224–232

    CAS  Google Scholar 

  43. Tsuchiya Y, Sumi K (1969) Thermal decomposition products of poly (vinyl alcohol). J Polym Sci A 1 Polym Chem 7(11):3151–3158

  44. Lee YM, Kimt SH, Kimt SJ (1996) Preparation and characteristics of β-chitin and poly (vinyl alcohol) blend. Polymer 37(26):5897–5905

    Google Scholar 

  45. Data retrieved from the Materials Project for Cu2O3 (mp-760432) from database version v2022.10.28. https://doi.org/10.17188/1291638

  46. Ahmed RM, Ibrahiem AA, El-Said EA (2020) Effect of cobalt chloride as filler and PVP on the optical properties of PVA/PEG/PVP blends. Opt Spectrosc 128:642–655

    CAS  Google Scholar 

  47. Darwish MA, Zubar TI, Kanafyev OD, Zhou D, Trukhanova EL, Trukhanov SV, Trukhanov AV, Henaish AM (2022) Combined effect of microstructure, surface energy, and adhesion force on the friction of PVA/ferrite spinel nanocomposites. Nanomater 12(12):1998

  48. Abdullah H, Naim NM, Azmy NAN, Hamid AA (2014) PANI-Ag-Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria. J Nanomater 2014:197

  49. Abdullah H, Noor Azmy NA, Naim NM, Bolhan A, Hamid AA, Shaari S (2014) Synthesis and fabrication of PVA-Ag-Cu and PANI-Ag-Cu nanocomposite thin film sensor for detection of E. Coli in water. Adv Mater Res 911:131–135

    CAS  Google Scholar 

  50. Naim NM, Abdullah H, Hamid AA (2019) Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection. Electron Mater Lett 15:70–79

    CAS  Google Scholar 

  51. Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM (2014) Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym 2014:846140

    Google Scholar 

  52. Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37(4):987–997

    CAS  Google Scholar 

  53. Banerjee M, Jain A, Mukherjee GS (2019) Microstructural and optical properties of polyvinyl alcohol/manganese chloride composite film. Polym Compos 40(S1):E765–E775

    CAS  Google Scholar 

  54. Prosanov IY, Bulina NV, Chesalov YA (2012) Hybrid material polyvinyl alcohol-copper oxide and its electrical properties. Phys Solid State 54(8):1699–1703

    CAS  Google Scholar 

  55. Auyeung A, Casillas-Santana MA, Martinez-Castanon GA, Slavin YN, Zhao W, Asnis J, Bach H (2017) Effective control of molds using a combination of nanoparticles. PLoS ONE 12(1):e0169940

    PubMed Central  PubMed  Google Scholar 

  56. León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR (2021) Nanomaterial-based antifungal therapies to combat fungal diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 10(10):1303

    PubMed Central  PubMed  Google Scholar 

  57. Nithya K, Kalyanasundharam S (2019) Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity. OpenNano 4:100024

  58. Chang SH, Lin HTV, Wu GJ, Tsai GJ (2015) pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81

    CAS  PubMed  Google Scholar 

  59. Inam M, Foster JC, Gao J, Hong Y, Du J, Dove AP, O’Reilly RK (2019) Size and shape affects the antimicrobial activity of quaternized nanoparticles. J Polym Sci A Polym Chem 57(3):255–259

    CAS  Google Scholar 

  60. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    CAS  Google Scholar 

  61. Schack NB, Oliveira CL, Young NW, Pedersen JS, Ogilby PR (2009) Oxygen diffusion in cross-linked, ethanol-swollen poly (vinyl alcohol) gels: counter-intuitive results reflect microscopic heterogeneities. Langmuir 25(2):1148–1153

    PubMed  Google Scholar 

  62. Malka E, Caspi A, Cohen R, Margel S (2022) Fabrication and characterization of hydrogen peroxide and thymol-loaded PVA/PVP hydrogel coatings as a novel anti-mold surface for hay protection. Polymers 14(24):5518

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. D. Smirnova for performing the XRD analysis, Dr. M. Yurov for conducting of SEM measurements, Dr. S. Guseinov for performing DSC analysis, Dr. N. Kochkina for conducting of DLS measurements and Dr. Yu. Fadeeva to performing the FTIR analysis at the center of joint use of scientific equipment (the Upper Volga Regional Center for Physical–Chemical Research, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Khlyustova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, A., Alekseeva, O., Vokhidova, N. et al. Effect of production method on the properties of PVA/Ag–Cu composites. Polym. Bull. 81, 6457–6472 (2024). https://doi.org/10.1007/s00289-023-04993-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04993-1

Keywords

Navigation