Skip to main content
Log in

Pursuit of high-performance carbon capture membranes: fabrication of nickel oxide-doped polyethersulfone-based mixed matrix membranes

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Separation of carbon dioxide from post-combustion flue gases is essential not only to mitigate global warming issues, but also to recover valuable carbon sources emitted from flue gases. Isotropic dense membranes of thermoplastic polyether sulfone impregnated with varied concentrations of nickel oxide nanoparticles were fabricated via solution casting with phase inversion techniques. Structural, morphological, thermal, and carbon capture characteristics of prepared membranes were appraised through state-of-the-art characterization techniques. The chemical and structural features of membranes were quantified by Fourier transform infrared spectroscopy. Morphological attributes like surface topography, cross-sectional view, filler dispersal, and filler matrix adhesion were assessed via micrographs taken by scanning electron microscopy. Characteristic temperatures and thermal stability of mixed membranes were analyzed by performing tests on thermo-gravimetric analyzer. The carbon capture efficiency of developed membranes was estimated by performing gas permeation experiments on an indigenously built gas permeation setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arif Z, Sethy NK (2022) Quantitative assessment and optimization of bi-functional membrane for remediation of Cr(VI) from wastewater. Water Sci Technol 86(8):1991–2007

    Article  CAS  PubMed  Google Scholar 

  2. Arif Z, Sethy NK, Mishra PK, Verma B (2020) Development of eco-friendly, self-cleaning, antibacterial membrane for the elimination of chromium(VI) from tannery wastewater. Int J Environ Sci Technol 17:4265–4280

    Article  CAS  Google Scholar 

  3. Sohail A, Sarfraz M, Nawaz S, Tahir Z (2023) Enhancing carbon capture efficiency of zeolite-embedded polyether sulfone mixed-matrix membranes via annealing process. J Clean Prod 399:136617

    Article  CAS  Google Scholar 

  4. Saleh TA (2022) Nanomaterials and hybrid nanocomposites for CO2 capture and utilization. Environ Energy Sustain 12(37):23869–23888

    CAS  Google Scholar 

  5. Liu H, Ampah JD, Afrane S, Adun H, Jin C, Yao MJR et al (2023) Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR). Implications on global energy-land-water system. Renew Sustain Energy Rev 184:113578

    Article  CAS  Google Scholar 

  6. Ritchie H, Roser M, Rosado P (2020) CO2 and greenhouse gas emissions.Our World in Data.

  7. Malla FA, Mushtaq A, Bandh SA, Qayoom I, Hoang AT (2022) Understanding climate change: scientific opinion and public perspective. In: Bandh SA (ed) Climate change: the social and scientific construct. Springer, Cham, pp 1–20

    Google Scholar 

  8. Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour MR, Farsi M, Makarem MA (eds) Advances in carbon capture. Woodhead Publishing, Cambridge, pp 3–28

    Chapter  Google Scholar 

  9. Shang WL, Lv Z (2023) Low carbon technology for carbon neutrality in sustainable cities: a survey. Sustain Cities Soc 92:104489

    Article  Google Scholar 

  10. Sifat NS, Haseli YJE (2019) A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12(21):4143

    Article  CAS  Google Scholar 

  11. Valappil SKR, Ghasem N, Al-Marzouqi M (2021) Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J Ind Eng Chem 98:103–129

    Article  Google Scholar 

  12. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781

    Article  CAS  PubMed  Google Scholar 

  13. Patel HD, Acharya NK (2022) Transport, spectroscopic, and electrical properties of thermally rearranged nanocomposite membranes. Chem Eng Technol 45(12):2223–2233

    Article  CAS  Google Scholar 

  14. Pokhrel J, Bhoria N, Wu C, Reddy KS, Margetis H, Anastasiou S, George G, Mittal V, Romanos G, Karonis D, Karanikolos GN (2018) Cu-and Zr-based metal organic frameworks and their composites with graphene oxide for capture of acid gases at ambient temperature. J Solid State Chem 266:233–243

    Article  CAS  Google Scholar 

  15. Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation a review. Sep Purif Technol 188:431–450

    Article  CAS  Google Scholar 

  16. Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S (2021) A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem Eng J Adv 6:100091

    Article  CAS  Google Scholar 

  17. Chen R, Chai M, Hou J (2023) Metal-organic framework-based mixed matrix membranes for gas separation: recent advances and opportunities. Carbon Capt Sci Technol 8:100130

    Article  CAS  Google Scholar 

  18. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49

    Article  CAS  Google Scholar 

  19. Kamble AR, Patel CM, Murthy ZJR, Reviews SE (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Energy Rev 145:111062

    CAS  Google Scholar 

  20. Fan Y, Yu H, Xu S, Shen Q, Ye H, Li N (2020) Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. J Membr Sci 597:117775

    Article  CAS  Google Scholar 

  21. Favvas EP, Heliopoulos NS, Karousos DS, Devlin E, Papageorgiou SK, Petridis D et al (2019) Mixed matrix polymeric and carbon hollow fiber membranes with magnetic ironbased nanoparticles and their application in gas mixture. Mater Chem Phys 223:220–229

    Article  CAS  Google Scholar 

  22. Hussain M, König A (2012) Mixed matrix membranes for gas separation: polydimethylsiloxane filled with zeolite. Chem Eng Technol 35(3):561–569

    Article  CAS  Google Scholar 

  23. Lin J, Dai L, Qian J, Xiao R (2022) Modeling the rate-dependent ductile-brittle transition in amorphous polymers. Acta Mech Sin 38(7):121438

    Article  CAS  Google Scholar 

  24. Rath GK, Pandey G, Singh S, Molokitina N, Kumar A, Joshi S, Chauhan G (2023) Carbon dioxide separation technologies: applicable to net zero. Energies 16(10):4100

    Article  CAS  Google Scholar 

  25. Ida S (2015) PES (Poly (ether sulfone)), Polysulfone. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, Heidelberg, pp 1528–1534

    Chapter  Google Scholar 

  26. Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A (2022) High performance of PES-GNs MMMs for gas separation and selectivity. Arab J Chem 15(2):103565

    Article  CAS  Google Scholar 

  27. Illing G, Hellgardt K, Wakeman RJ, Jungbauer A (2001) Preparation and characterisation of polyaniline based membranes for gas separation. J Membr Sci 184(1):69–78

    Article  CAS  Google Scholar 

  28. Ningsih SK (2015) Synthesis and characterization of NiO nanopowder by sol-gel process. In: AIP Conference Proceedings. Vol 1677 AIP Publishing, p 1

  29. Daglar H, Erucar I, Keskin S (2021) Recent advances in simulating gas permeation through MOF membranes. Mater Adv 2(16):5300–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarfraz M (2020) Carbon capture via mixed-matrix membranes containing nanomaterials and metal-organic frameworks. In: Zhang Z, Zhang W, Lichtfouse E (eds) Membranes for environmental applications, vol 42. Environmental Chemistry for a Sustainable World, Springer, Cham, pp 45–94

    Chapter  Google Scholar 

  31. Sarfraz M, Ba-Shammakh M (2018) Pursuit of efficient CO2-capture membranes: graphene oxide- and MOF-integrated Ultrason® membranes. Polym Bull 75:5039–5059

    Article  CAS  Google Scholar 

  32. Alenazi NA, Hussein MA, Alamry KA, Asiri AM (2018) Nanocomposite-based aminated polyethersulfone and carboxylate activated carbon for environmental application. Real Sample Anal C 4(2):30

    Google Scholar 

  33. Aframehr WM, Molki B, Bagheri R, Heidarian P, Davodi SM (2020) Characterization and enhancement of the gas separation properties of mixed matrix membranes: polyimide with nickel oxide nanoparticles. Chem Eng Res Des 153:789–805

    Article  CAS  Google Scholar 

  34. Yazid AF, Mukhtar H, Nasir R, Mohshim DF (2022) Incorporating carbon nanotubes in nanocomposite mixed-matrix membranes for gas separation: a review. Membranes 12(6):589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monteleone M, Mobili R, Milanese C, Esposito E, Fuoco A, La Cognata S, Amendola V, Jansen JC (2021) PEEK-WC-based mixed matrix membranes containing polyimine cages for gas separation. Molecules 26(18):5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma J, Ying Y, Yang Q, Ban Y, Huang H, Guo X et al (2015) Mixed-matrix membranes containing functionalized porous metal organic polyhedrons for the effective separation of CO2–CH4 mixture. Chem Commun 51(20):4249–4251

    Article  CAS  Google Scholar 

  37. Zhao S, Wang Z, Qiao Z, Wei X, Zhang C, Wang J, Wang S (2013) Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. J Mater Chem A 1(2):246–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research team is obliged to the University of Engineering and Technology Lahore HEC-funded project No. 20-12783/NRPU/R&D/HEC/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sarfraz.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasif, M., Sarfraz, M., Tahir, Z. et al. Pursuit of high-performance carbon capture membranes: fabrication of nickel oxide-doped polyethersulfone-based mixed matrix membranes. Polym. Bull. 81, 5925–5938 (2024). https://doi.org/10.1007/s00289-023-04981-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04981-5

Keywords

Navigation