Skip to main content

Advertisement

Log in

Pectin nanoforms—a multifaceted polysaccharide and a propitious nanocarrier for medical ailments

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Pectin is a natural anionic hetero-polysaccharide substantially found in fruits and cell wall of plants. Nanomaterials of natural polysaccharides are the excellent carriers for targeting specific drug delivery due to multivalent interaction of sugar molecules. Pectin-based nanoforms manifest good stability, safety, low immunogenicity, low toxicity, hydrophilicity, gelling ability and biodegradability, which propose their applicability in various biomedical application. Pectin-based nanoparticles can inhibit the growth of several pathogenic bacteria including Staphylococcus aureus, Escherichia coli and Aspergillus japonicus. In addition, it also exhibits strong antioxidant property which can scavenge free radicals and help to prevent or manage various disease conditions. Its role in the detoxification of metals and carcinogens as well as its anti-carcinogenic qualities have made it of great interest to cancer researchers. The pectin-based nanocarrier offer a promising platform for the delivery of a wide range of drugs including chemotherapeutic drugs with good pharmacokinetics and controlled drug release. This review describes the neoteric evidence of pectin and their nano-formulations in biomedical applications as an antimicrobial, antioxidant, anticancer agents and a key role in drug delivery mechanisms.

Graphical abstract

Pectin based metal nanoparticles and its biomedical applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vityazev FV, Khramova DS, Saveliev NY et al (2020) Pectin–glycerol gel beads: preparation, characterization and swelling behaviour. Carbohydr Polym 238:116166. https://doi.org/10.1016/j.carbpol.2020.116166

    Article  CAS  PubMed  Google Scholar 

  2. de Oliveira RCR, Rafael Almeida R, Justino Uchoa AF et al (2020) Production and characterization of melon sulfated pectin (Cucumis melo var. acidulus) nanoparticles with anticoagulant potential. J Young Pharm 12:135–140. https://doi.org/10.5530/jyp.2020.12.27

    Article  CAS  Google Scholar 

  3. Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S (2019) Marine polysaccharides in pharmaceutical applications: fucoidan and chitosan as key players in the drug delivery match field. Mar Drugs 17(12):654. https://doi.org/10.3390/md17120654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lai YH, Chiang CS, Hsu CH et al (2020) Development and characterization of a fucoidan-based drug delivery system by using hydrophilic anticancer polysaccharides to simultaneously deliver hydrophobic anticancer drugs. Biomolecules 10:1–18. https://doi.org/10.3390/biom10070970

    Article  CAS  Google Scholar 

  5. Robla S, Prasanna M, Varela-Calviño R et al (2021) A chitosan-based nanosystem as pneumococcal vaccine delivery platform. Drug Deliv Transl Res 11:581–597. https://doi.org/10.1007/s13346-021-00928-3

    Article  CAS  PubMed  Google Scholar 

  6. Dehghan S, Kheiri MT, Abnous K et al (2018) Preparation, characterization and immunological evaluation of alginate nanoparticles loaded with whole inactivated influenza virus: dry powder formulation for nasal immunization in rabbits. Microb Pathog 115:74–85. https://doi.org/10.1016/j.micpath.2017.12.011

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Z, Pan X, Wang H et al (2021) Mechanism of lentinan intestinal absorption: clathrin-mediated endocytosis and macropinocytosis. J Agric Food Chem 69:7344–7352. https://doi.org/10.1021/acs.jafc.1c00349

    Article  CAS  PubMed  Google Scholar 

  8. Li M, Sun Y, Ma C et al (2021) Design and investigation of penetrating mechanism of octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J Pharm Sci 110:268–279. https://doi.org/10.1016/j.xphs.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  9. Vijayakumar S, Saravanakumar K, Malaikozhundan B et al (2020) Biopolymer K-carrageenan wrapped ZnO nanoparticles as drug delivery vehicles for anti MRSA therapy. Int J Biol Macromol 144:9–18. https://doi.org/10.1016/j.ijbiomac.2019.12.030

    Article  CAS  PubMed  Google Scholar 

  10. Khan YA, Ozaltin K, Bernal-Ballen A, Di Martino A (2021) Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy. J Drug Deliv Sci Technol 61:102126. https://doi.org/10.1016/j.jddst.2020.102126

    Article  CAS  Google Scholar 

  11. Muthulakshmi L, Pavithra U, Sivaranjani V et al (2021) A novel Ag/carrageenan–gelatin hybrid hydrogel nanocomposite and its biological applications: preparation and characterization. J Mech Behav Biomed Mater 115:104257. https://doi.org/10.1016/j.jmbbm.2020.104257

    Article  CAS  PubMed  Google Scholar 

  12. Sahatsapan N, Rojanarata T, Ngawhirunpat T et al (2021) Doxorubicin-loaded chitosan-alginate nanoparticles with dual mucoadhesive functionalities for intravesical chemotherapy. J Drug Deliv Sci Technol 63:102481. https://doi.org/10.1016/j.jddst.2021.102481

    Article  CAS  Google Scholar 

  13. Posocco B, Dreussi E, De Santa J et al (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8:2569–2615

    Article  CAS  PubMed Central  Google Scholar 

  14. Fahmy HM, Aly AA, Sayed SM, Abou-Okeil A (2021) К-carrageenan/Na-alginate wound dressing with sustainable drug delivery properties. Polym Adv Technol 32:1793–1801. https://doi.org/10.1002/pat.5218

    Article  CAS  Google Scholar 

  15. Pasandide B, Khodaiyan F, Mousavi ZE, Hosseini SS (2017) Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydr Polym 178:27–33. https://doi.org/10.1016/j.carbpol.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  16. Colodel C, Vriesmann LC, de Oliveira L, Petkowicz C (2019) Rheological characterization of a pectin extracted from ponkan (Citrus reticulata blanco cv. ponkan) peel. Food Hydrocoll 94:326–332. https://doi.org/10.1016/j.foodhyd.2019.03.025

    Article  CAS  Google Scholar 

  17. Jin Y, Yang N (2020) Array-induced voltages assisted extraction of pectin from grapefruit (Citrus paradisi Macf.) peel and its characterization. Int J Biol Macromol 152:1205–1212. https://doi.org/10.1016/j.ijbiomac.2019.10.215

    Article  CAS  PubMed  Google Scholar 

  18. Salma M, Jahan N, Islam M, Hoque M (2014) Extraction of pectin from lemon peel: technology development. J Chem Eng 27:25–30. https://doi.org/10.3329/jce.v27i2.17797

    Article  Google Scholar 

  19. Wang W, Ma X, Jiang P et al (2016) Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll 61:730–739. https://doi.org/10.1016/j.foodhyd.2016.06.019

    Article  CAS  Google Scholar 

  20. Pacheco MT, Villamiel M, Moreno R, Moreno FJ (2019) Structural and rheological properties of pectins extracted from industrial sugar beet by-products. Molecules 24:392. https://doi.org/10.3390/molecules24030392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perussello CA, Zhang Z, Marzocchella A, Tiwari BK (2017) Valorization of apple pomace by extraction of valuable compounds. Compr Rev Food Sci Food Saf 16:776–796. https://doi.org/10.1111/1541-4337.12290

    Article  CAS  PubMed  Google Scholar 

  22. Babbar N, Dejonghe W, Gatti M et al (2016) Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol 36:594–606. https://doi.org/10.3109/07388551.2014.996732

    Article  CAS  PubMed  Google Scholar 

  23. Abebe Alamineh E (2018) Extraction of pectin from orange peels and characterizing its physical and chemical properties. Am J Appl Chem 6:51. https://doi.org/10.11648/j.ajac.20180602.13

    Article  CAS  Google Scholar 

  24. Bindereif B, Eichhöfer H, Bunzel M et al (2021) Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocoll 121:106968. https://doi.org/10.1016/j.foodhyd.2021.106968

    Article  CAS  Google Scholar 

  25. Sucheta, Misra NN, Yadav SK (2020) Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: kinetics, characterization and process economics. Food Hydrocoll 102:105592. https://doi.org/10.1016/j.foodhyd.2019.105592

    Article  CAS  Google Scholar 

  26. Xu H, Tai K, Wei T et al (2017) Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids. J Sci Food Agric 97:4953–4960. https://doi.org/10.1002/jsfa.8372

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Qiu S, Liu Y et al (2018) Emulsifying properties and functional compositions of sugar beet pectins extracted under different conditions. J Dispers Sci Technol 39:484–490. https://doi.org/10.1080/01932691.2016.1151360

    Article  CAS  Google Scholar 

  28. Thirugnanasambandham K, Sivakumar V, Prakash Maran J (2014) Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr Polym 112:622–626. https://doi.org/10.1016/j.carbpol.2014.06.044

    Article  CAS  PubMed  Google Scholar 

  29. Marić M, Grassino AN, Zhu Z et al (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37

    Article  Google Scholar 

  30. Dranca F, Oroian M (2018) Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 113:327–350

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Fan Y, Xi J (2019) Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chem 277:246–260

    Article  CAS  PubMed  Google Scholar 

  32. Sadeghnezhad Z, Amiri S, Rezazadeh-Bari M, Almasi H (2020) Physical and morphological characteristics of edible composite film of sodium caseinate/pectin/zedo gum containing poulk (stachys schtschegleevii) extract: optimizing bioactivity and physicochemical properties. J Packag Technol Res 4:187–203. https://doi.org/10.1007/s41783-020-00094-w

    Article  Google Scholar 

  33. Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M et al (2021) Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: a comparative study on viability, stability, and structure. Food Sci Nutr 9:5103–5111. https://doi.org/10.1002/fsn3.2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hari KD, Garcia CV, Shin GH, Kim JT (2021) Improvement of the UV barrier and antibacterial properties of crosslinked pectin/zinc oxide bionanocomposite films. Polymers 13:2403. https://doi.org/10.3390/polym13152403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Novickij V, Stanevičienė R, Staigvila G et al (2020) Effects of pulsed electric fields and mild thermal treatment on antimicrobial efficacy of nisin-loaded pectin nanoparticles for food preservation. LWT 120:108915. https://doi.org/10.1016/j.lwt.2019.108915

    Article  CAS  Google Scholar 

  36. Li P, jun, Liang J ye, Su D lin, et al (2020) Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities. Bioprocess Biosyst Eng 43:2017–2026. https://doi.org/10.1007/s00449-020-02390-w

    Article  CAS  PubMed  Google Scholar 

  37. Patil SN, Paradeshi JS, Chaudhari PB et al (2016) Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol 180:638–654. https://doi.org/10.1007/s12010-016-2121-9

    Article  CAS  PubMed  Google Scholar 

  38. Su D, Li P, Ning M et al (2019) Microwave assisted green synthesis of pectin based silver nanoparticles and their antibacterial and antifungal activities. Mater Lett 244:35–38. https://doi.org/10.1016/j.matlet.2019.02.059

    Article  CAS  Google Scholar 

  39. Hileuskaya K, Ladutska A, Kulikouskaya V et al (2020) ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: physico-chemical characterization and antibacterial activity. Colloids Surf A Physicochem Eng Asp 585:124141. https://doi.org/10.1016/j.colsurfa.2019.124141

    Article  CAS  Google Scholar 

  40. Qiu WY, Wang YY, Wang M, Yan JK (2018) Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf B Biointerfaces 170:692–700. https://doi.org/10.1016/j.colsurfb.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  41. Hu Y, Zhang W, Ke Z et al (2017) In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles. Int J Food Sci Technol 52:2362–2373. https://doi.org/10.1111/ijfs.13520

    Article  CAS  Google Scholar 

  42. Burapapadh K, Takeuchi H, Sriamornsak P (2016) Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian J Pharm Sci 11:365–375. https://doi.org/10.1016/j.ajps.2015.07.003

    Article  Google Scholar 

  43. Chinnaiyan SK, Karthikeyan D, Gadela VR (2018) Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm Nanotechnol 6:253–263. https://doi.org/10.2174/2211738507666181221142406

    Article  CAS  PubMed  Google Scholar 

  44. Dogan Ergin A, Bayindir ZS, Ozcelikay AT, Yuksel N (2021) A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: pectin nanoparticles-in-microparticles and their in vitro–in vivo evaluation’. J Drug Deliv Sci Technol. 61:102096. https://doi.org/10.1016/j.jddst.2020.102096

    Article  CAS  Google Scholar 

  45. Sarma S, Agarwal S, Bhuyan P et al (2022) Resveratrol-loaded chitosan-pectin core-shell nanoparticles as novel drug delivery vehicle for sustained release and improved antioxidant activities. R Soc Open Sci 9:210784. https://doi.org/10.1098/rsos.210784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Chen D, Yu D et al (2022) Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilayer films with curcumin/nisin-loaded pectin nanoparticles. Food Hydrocoll 133:107955. https://doi.org/10.1016/J.FOODHYD.2022.107955

    Article  CAS  Google Scholar 

  47. Kumar P, Kumar V, Kumar R, Pruncu CI (2020) Fabrication and characterization of ceftizoxime-loaded pectin nanocarriers. Nanomaterials 10:1–13. https://doi.org/10.3390/nano10081452

    Article  CAS  Google Scholar 

  48. Cheng K, Lim LY (2004) Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm 30:359–367. https://doi.org/10.1081/DDC-120030930

    Article  CAS  PubMed  Google Scholar 

  49. Ramasamy T, Ruttala HB, Shanmugam S, Umadevi SK (2013) Eudragit-coated aceclofenac-loaded pectin microspheres in chronopharmacological treatment of rheumatoid arthritis. Drug Deliv 20:65–77. https://doi.org/10.3109/10717544.2012.762434

    Article  CAS  PubMed  Google Scholar 

  50. An H, Yang Y, Zhou Z et al (2021) Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomater 131:149–161. https://doi.org/10.1016/j.actbio.2021.06.029

    Article  CAS  PubMed  Google Scholar 

  51. Peng Y, Li X, Gu P et al (2022) Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2). J Drug Deliv Sci Technol 74:103497. https://doi.org/10.1016/j.jddst.2022.103497

    Article  CAS  Google Scholar 

  52. Dutta RK, Sahu S (2012) Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci 2:38–45. https://doi.org/10.1016/j.rinphs.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tao Y, Li Y, Wei D et al (2023) Fe3O4 nanoparticles embedded in pectin-doxorubicin composites as pH-responsive nanoplatforms for tumor diagnosis and therapy by T1-weighted magnetic imaging. ACS Appl Nano Mater 6:633–645. https://doi.org/10.1021/acsanm.2c04747

    Article  CAS  Google Scholar 

  54. Tian G, Guifang Z, Qiumian Y et al (2016) In vitro anticancer activity of doxorubicin-loading pectin nanoparticles. J Pharm Biomed Sci 06(05):338–342. https://doi.org/10.20936/jpbms/160249

    Article  CAS  Google Scholar 

  55. Chittasupho C, Jaturanpinyo M, Mangmool S (2013) Pectin nanoparticle enhances cytotoxicity of methotrexate against hepG2 cells. Drug Deliv 20:1–9. https://doi.org/10.3109/10717544.2012.739214

    Article  CAS  PubMed  Google Scholar 

  56. Izadi Z, Divsalar A, Saboury AA, Sawyer L (2016) β-lactoglobulin–pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer. Chem Biol Drug Des 88:209–216. https://doi.org/10.1111/cbdd.12748

    Article  CAS  PubMed  Google Scholar 

  57. Borker S, Pokharkar V (2018) Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: an insight into mechanism of cellular uptake. Artif Cells Nanomed Biotechnol 46:826–835. https://doi.org/10.1080/21691401.2018.1470525

    Article  CAS  PubMed  Google Scholar 

  58. Chen Y, Jiang Y, Wen L, Yang B (2022) Structure, stability and bioaccessibility of icaritin-loaded pectin nanoparticle. Food Hydrocoll 129:107663. https://doi.org/10.1016/j.foodhyd.2022.107663

    Article  CAS  Google Scholar 

  59. Sesarman A, Tefas L, Sylvester B et al (2019) Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res 9:260–272. https://doi.org/10.1007/s13346-018-00598-8

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Yang C, Wang W et al (2016) Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 6:21225. https://doi.org/10.1038/srep21225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yan T, Li D, Li J et al (2016) Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy. Colloids Surf B Biointerfaces 145:526–538. https://doi.org/10.1016/j.colsurfb.2016.05.070

    Article  CAS  PubMed  Google Scholar 

  62. Kang RK, Mishr N, Rai VK (2020) Guar gum micro-particles for targeted co-delivery of doxorubicin and metformin HCL for improved specificity and efficacy against colon cancer: in vitro and in vivo studies. AAPS PharmSciTech 21:1–11. https://doi.org/10.1208/s12249-019-1589-3

    Article  CAS  Google Scholar 

  63. Tao Y, Zheng D, Zhao J et al (2021) Self-assembling pH-responsive nanoparticle platform based on pectin-doxorubicin conjugates for codelivery of anticancer drugs. ACS Omega 6:9998–10004. https://doi.org/10.1021/acsomega.0c06131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liang X, Shi L, Zhang R, Zhang M (2022) Pectin mediated green synthesis of CuO nanoparticles: evaluation of its cytotoxicity, antioxidant and anti-human cervical cancer properties. J Exp Nanosci 17:315–325. https://doi.org/10.1080/17458080.2021.2013470

    Article  CAS  Google Scholar 

  65. Wang C, Li G, Karmakar B et al (2022) Pectin mediated green synthesis of Fe3O4/pectin nanoparticles under ultrasound condition as an anti-human colorectal carcinoma bionanocomposite. Arab J Chem 15:103867. https://doi.org/10.1016/j.arabjc.2022.103867

    Article  CAS  Google Scholar 

  66. Zong H, Zhang S, Zangeneh MM et al (2023) Synthesis of Fe3O4 nanoparticles encapsulated with orange pectin for the treatment of gastrointestinal cancers. Mater Express 12:1455–1464. https://doi.org/10.1166/mex.2022.2314

    Article  CAS  Google Scholar 

  67. Yu CY, Wang YM, Li NM et al (2014) In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. Mol Pharm 11:638–644. https://doi.org/10.1021/mp400412c

    Article  CAS  PubMed  Google Scholar 

  68. Ye PJ, Huang C, Yang S et al (2018) Facile fabrication of a novel hybrid nanoparticles by self-assembling based on pectin-doxorubicin conjugates for hepatocellular carcinoma therapy. Artif Cells Nanomed Biotechnol 46:S661–S670. https://doi.org/10.1080/21691401.2018.1505745

    Article  CAS  PubMed  Google Scholar 

  69. Alippilakkotte S, Sreejith L (2018) Pectin mediated synthesis of curcumin loaded poly(lactic acid) nanocapsules for cancer treatment. J Drug Deliv Sci Technol 48:66–74. https://doi.org/10.1016/j.jddst.2018.09.001

    Article  CAS  Google Scholar 

  70. Ouyang J, Yang M, Gong T et al (2020) Doxorubicin-loading core-shell pectin nanocell: a novel nanovehicle for anticancer agent delivery with multidrug resistance reversal. PLoS ONE 15:e0235090. https://doi.org/10.1371/journal.pone.0235090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funding has been received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavarani Alwarsamy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests for the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashidhara, V., Alwarsamy, M. Pectin nanoforms—a multifaceted polysaccharide and a propitious nanocarrier for medical ailments. Polym. Bull. 81, 4801–4818 (2024). https://doi.org/10.1007/s00289-023-04972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04972-6

Keywords

Navigation