Skip to main content
Log in

“Greener” homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the Eastern region of Morocco using ionic liquids as reaction medium

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the eastern region of Morocco, using anhydride and acid chloride compounds has been performed in ionic liquids (ILs) prepared in our laboratory as reaction mediums. ILs were chosen as solvents due to their green character and ability to disperse native cellulose compared to other solvents. [C4mim]OAc showed the highest solubility percentage of cellulose (15 wt%). Other principles of green chemistry were applied herein such as the uses of biomass, catalysts, and green solvents. The formed cellulosic esters were analyzed for structural, surface, and thermal properties by various analytical techniques: FTIR-ATR, NMR, XRD, TGA, and DSC. The esterificating agents were varied in this study to obtain different cellulose derivatives. Notably, high degrees of substitution (DS) were achieved for cellulose propionate (2.91) and cellulose butyrate (2.76). However, cellulose phthalate and cellulose laureate were obtained with low DS values, which affect their solubility in different solvents depending on their DS values. The effect of esterification on cellulose properties, on one hand, decreases the crystallinity index (CIr) and crystallite size, however, on the other hand, increased the surface area and pore volume. The contact angle measurements revealed an enhancement in the hydrophobicity of the cellulose esters. Particularly, cellulose propionate with high DS exhibited a significantly elevated contact angle, reaching 142.5°. This emphasizes that the hydrophobic nature of the modified cellulose can be improved by raising the DS, rather than solely relying on the length of the carbonyl chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    CAS  Google Scholar 

  2. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475

    CAS  Google Scholar 

  3. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99

    CAS  Google Scholar 

  4. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Google Scholar 

  5. Jin X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J (2017) Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Biores Technol 241:603–609

    CAS  Google Scholar 

  6. Isogai A, Ishizu A, Nakano J (1987) Dissolution mechanism of cellulose in SO2–amine–dimethylsulfoxide. J Appl Polym Sci 33:1283–1290

    CAS  Google Scholar 

  7. Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30:405–440

    Google Scholar 

  8. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    CAS  Google Scholar 

  9. Klemm D, Heinze T, Philipp B, Wagenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297

    CAS  Google Scholar 

  10. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    CAS  PubMed  Google Scholar 

  11. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    CAS  Google Scholar 

  12. Dupont J, de Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    CAS  PubMed  Google Scholar 

  13. Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290

    CAS  Google Scholar 

  14. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  PubMed  Google Scholar 

  15. Ren Q, Wu J, Zhang J (2003) Synthesis of 1-allyl, 3-methyle mazolium-based roomtemperature ionic liquid and preluviinary study of its dissolving cellulose

  16. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297

    CAS  Google Scholar 

  17. Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    CAS  Google Scholar 

  18. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587

    CAS  Google Scholar 

  19. Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48:1808–1810

    CAS  Google Scholar 

  20. Miao J, Sun H, Yu Y, Song X, Zhang L (2014) Quaternary ammonium acetate: an efficient ionic liquid for the dissolution and regeneration of cellulose. RSC Adv 4:36721–36724

    CAS  Google Scholar 

  21. Li X, Li H, Ling Z, Xu D, You T, Wu Y-Y, Xu F (2020) Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure. Macromolecules 53:3284–3295

    CAS  Google Scholar 

  22. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    CAS  Google Scholar 

  23. Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445

    CAS  PubMed  Google Scholar 

  24. Köhler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci, Part A: Polym Chem 46:4070–4080

    Google Scholar 

  25. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8–synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353

    CAS  PubMed  Google Scholar 

  26. Granström M, Mormann W, Frank P (2014) Method of chlorinating polysaccharides or oligosaccharides

  27. Köhler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Möllmann E, Becker W (2010) Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448

    Google Scholar 

  28. Granström M, Kavakka J, King A, Majoinen J, Mäkelä V, Helaja J, Hietala S, Virtanen T, Maunu S-L, Argyropoulos DS (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15:481–488

    Google Scholar 

  29. Xiao P, Zhang J, Feng Y, Wu J, He J, Zhang J (2014) Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: Cellulose diphenyl phosphate and its mixed esters. Cellulose 21:2369–2378

    CAS  Google Scholar 

  30. Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly (L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromol 10:2013–2018

    CAS  Google Scholar 

  31. Guo Y, Wang X, Shen Z, Shu X, Sun R (2013) Preparation of cellulose-graft-poly (ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohyd Polym 92:77–83

    CAS  Google Scholar 

  32. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268

    CAS  Google Scholar 

  33. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    CAS  PubMed  Google Scholar 

  34. Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohyd Polym 92:307–311

    CAS  Google Scholar 

  35. Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohyd Polym 68:17–25

    CAS  Google Scholar 

  36. Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohyd Res 342:919–926

    CAS  Google Scholar 

  37. Köhler S, Heinze T (2007) Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14:489–495

    Google Scholar 

  38. Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308

    CAS  Google Scholar 

  39. Ma S, Xue X, Yu S, Wang Z (2012) High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crops Prod 35:135–139

    CAS  Google Scholar 

  40. Li HF, Li H, Zhong X, Li XD, Gibril ME, Zhang Y, Han KQ, Yu MH (2012) Study on the chemical modification of cellulose in ionic liquid with maleic anhydride. Adv Mater Res Trans Tech Publ 581:287–291

    Google Scholar 

  41. Granström M, néePääkkö MK, Jin H, Kolehmainen E, Kilpeläinen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796

    Google Scholar 

  42. Singh RK, Gupta P, Sharma OP, Ray SS (2015) Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J Ind Eng Chem 24:14–19

    CAS  Google Scholar 

  43. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    CAS  Google Scholar 

  44. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Google Scholar 

  45. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    CAS  PubMed  Google Scholar 

  46. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    CAS  PubMed  Google Scholar 

  47. Sèbe G, Ham-Pichavant F, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944

    Google Scholar 

  48. Cunha AG, Mougel J-B, Cathala B, Berglund LA, Capron I (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335

    CAS  PubMed  Google Scholar 

  49. Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769

    CAS  PubMed  Google Scholar 

  50. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806

    CAS  Google Scholar 

  51. Shin J, Nouranian S, Ureña-Benavides EE, Smith AE (2017) Dynamic mechanical and thermal properties of cellulose nanocrystal/epoxy nanocomposites. Green Mater 5:123–134

    Google Scholar 

  52. Molnes SN, Mamonov A, Paso KG, Strand S, Syverud K (2018) Investigation of a new application for cellulose nanocrystals: a study of the enhanced oil recovery potential by use of a green additive. Cellulose 25:2289–2301

    CAS  Google Scholar 

  53. Parajuli S, Prater LA, Heath T, Green KA, Moyer W, Hutton-Prager B, Ureña-Benavides EE (2020) Cellulose nanocrystal-stabilized dispersions of CO2, heptane, and perfluorooctane at elevated temperatures and pressures for underground CO2 sequestration. ACS Appl Nano Mater 3:12198–12208

    CAS  Google Scholar 

  54. El Idrissi A, El Barkany S, Amhamdi H, Maaroufi A-K (2013) Physicochemical characterization of celluloses extracted from Esparto “Stipa tenacissima” of Eastern Morocco. J Appl Polym Sci 128:537–548

    Google Scholar 

  55. Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Prod 70:125–133

    CAS  Google Scholar 

  56. Liu C-F, Sun R-C, Zhang A-P, Qin M-H, Ren J-L, Wang X-A (2007) Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. J Agric Food Chem 55:2399–2406

    CAS  PubMed  Google Scholar 

  57. Hinner LP, Wissner JL, Beurer A, Nebel BA, Hauer B (2016) Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem 18:6099–6107

    CAS  Google Scholar 

  58. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677

    CAS  Google Scholar 

  59. El-Sakhawy M, Tohamy H-AS, Salama A, Kamel S (2019) Thermal properties of carboxymethyl cellulose acetate butyrate. Cellul Chem Technol 53:667–675

    CAS  Google Scholar 

  60. Fringant C, Desbrieres J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer 37:2663–2673

    CAS  Google Scholar 

  61. Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804

    CAS  Google Scholar 

  62. Chen Z, Zhang J, Xiao P, Tian W, Zhang J (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939

    CAS  Google Scholar 

  63. Zhuang JM, Steiner PR (1993) Thermal reactions of diisocyanate (MDI) with phenols and benzylalcohols: DSC study and synthesis of MDI adducts

  64. Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

  65. ELIdrissi A, Barkany S, Hassan A, Maaroufi A (2012) New approach to predict the solubility of polymers, application: cellulose acetate at various DS, prepared from Alfa “Stipa tenacissima” of Eastern Morocco. J Mater Environ Sci 3:270

    CAS  Google Scholar 

  66. Huang FY, Yu Y, Wu XJ (2011) Characterization and properties of cellulose oleate. Adv Mater Res 197–198:1306–1309

    Google Scholar 

  67. El Seoud OA, Bioni TA, Dignani MT (2021) Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: quantification of the relative importance of hydrogen bonding and hydrophobic interactions. J Molecul Liq 322:114848

    Google Scholar 

  68. Huang L, Wu Q, Wang Q, Wolcott M (2019) One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustain Chem Eng 7:15920–15927

    CAS  Google Scholar 

  69. Hou D-F, Li M-L, Yan C, Zhou L, Liu Z-Y, Yang W, Yang M-B (2021) Mechanochemical preparation of thermoplastic cellulose oleate by ball milling. Green Chem 23:2069–2078

    CAS  Google Scholar 

  70. Zhang W, Zhou N, Zhang Y, Huang Z, Hu H, Liang J, Qin Y (2021) Construction of thermoplastic cellulose esters matrix composites with enhanced flame retardancy and mechanical properties by embedding hydrophobic magnesium hydroxide. J Appl Polym Sci 138:50677

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation for the financial support of this study by the National Centre Research Scientific and Technique (CNRST) (Program, No. 15/2017) and the Mohamed First University (Program: PARA1). The authors like also to deliver a special thanks to the director of the chemistry department Professor Abdelmonaem El Talhaoui for providing the analytical platform in the department of chemistry.

Funding

National Centre Research Scientific and Technique (CNRST) (Program, No. 15/2017). Mohamed First University (Program: PARA1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayoub Abarkan or Abderahmane El Idrissi.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarkan, A., Achalhi, N., El Yousfi, R. et al. “Greener” homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the Eastern region of Morocco using ionic liquids as reaction medium. Polym. Bull. 81, 5375–5402 (2024). https://doi.org/10.1007/s00289-023-04965-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04965-5

Keywords

Navigation