Skip to main content
Log in

Ionic liquid assisted the extraction of cellulose from de-oiled Calophyllum inophyllum cake and its characterization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present work reports the ionic liquid, 1-butyl-3-methylimidazolium chloride [BMIM] Cl, assisted extraction, and characterization of cellulose from the Calophyllum inophyllum de-oiled cake. The yield of the cellulose from the ionic liquid extraction was approximately 23.81 ± 1.72% w/w of the de-oiled cake, which is almost equal to any other fractionation. SEM imaging revealed the swollen nature of cellulose fibers. The results of FTIR affirmed the presence of cellulose functional groups and the absence of hemicellulose and lignin. XRD analysis revealed 81% crystallinity of the cellulose. The dominant carbon peaks from 60 to 106 ppm from CP/MAS 13C NMR also confirmed the presence and purity of cellulose. The thermal degradation pattern of extracted cellulose in between 200 and 350 °C was in good agreement with the literature. Overall, the present results confirmed that a high-quality cellulose fraction could be produced from the lignocellulosic biomass by employing a competent and green approach using the ionic liquid [BMIM] Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ong H, Mahlia T, Masjuki H, Norhasyima R (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev 15(8):3501–3515

    Article  Google Scholar 

  2. Sakthivel R, Ramesh K (2017) Influence of temperature on yield, composition and properties of the sub-fractions derived from slow pyrolysis of Calophyllum inophyllum de-oiled cake. J Anal Appl Pyrolysis 127:159–169

    Article  Google Scholar 

  3. Ayodele OO, Dawodu FA (2014) Production of biodiesel from Calophyllum inophyllum oil using a cellulose-derived catalyst. Biomass Bioenergy 70:239–248

    Article  Google Scholar 

  4. Makkar HP (2013) Biofuel co-products as livestock feed-opportunities and challenges. AFMA Matrix 22(1):23–25

    Google Scholar 

  5. Cheng Y-S, Wu J-H, Yeh L-H (2016) Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production. Bioresour Technol 212:338–341

    Article  Google Scholar 

  6. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  Google Scholar 

  7. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Res J 3(1):347–356

    Article  Google Scholar 

  8. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267

    Article  Google Scholar 

  9. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11

    Article  Google Scholar 

  10. da Costa Lopes AM, Bogel-Łukasik R (2015) Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem 8(6):947–965

    Article  Google Scholar 

  11. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587

    Article  Google Scholar 

  12. Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8(20):3366–3390

    Article  Google Scholar 

  13. da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Processes 1(1):3

    Article  Google Scholar 

  14. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  15. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11(3):417–424

    Article  Google Scholar 

  16. Araújo D, Vilarinho M, Machado A (2019) Effect of combined dilute-alkaline and green pretreatments on corncob fractionation: pretreated biomass characterization and regenerated cellulose film production. Ind Crop Prod 141:111785

    Article  Google Scholar 

  17. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66

    Article  Google Scholar 

  18. Arumugam A, Sandhya M, Ponnusami V (2014) Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol 164:170–176

    Article  Google Scholar 

  19. Adenuga AA, Amos OD, Oyekunle JAO, Umukoro EH (2019) Adsorption performance and mechanism of a low-cost biosorbent from spent seedcake of Calophyllum inophyllum in simultaneous cleanup of potentially toxic metals from industrial wastewater. J Environ Chem Eng 7(5):103317

    Article  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617:1–16

    Google Scholar 

  21. Farhat W, Venditti R, Quick A, Taha M, Mignard N, Becquart F, Ayoub A (2017) Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind Crop Prod 107:370–377

    Article  Google Scholar 

  22. Zhang P, Dong S-J, Ma H-H, Zhang B-X, Wang Y-F, Hu X-M (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crop Prod 76:688–696

    Article  Google Scholar 

  23. Ling Z, Wang T, Makarem M, Cintrón MS, Cheng H, Kang X, Bacher M, Potthast A, Rosenau T, King H (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328

    Article  Google Scholar 

  24. Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20(1):105–111

    Article  Google Scholar 

  25. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613

    Article  Google Scholar 

  26. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9(1):16709. https://doi.org/10.1038/s41598-019-53412-x

    Article  Google Scholar 

  27. Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H (2017) An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr Polym 166:291–299

    Article  Google Scholar 

  28. Rehman N, de Miranda MIG, Rosa SM, Pimentel DM, Nachtigall SM, Bica CI (2014) Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J Polym Environ 22(2):252–259

    Google Scholar 

  29. Lucas M, Wagner GL, Nishiyama Y, Hanson L, Samayam IP, Schall CA, Langan P, Rector KD (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102(6):4518–4523

    Article  Google Scholar 

  30. Moniruzzaman M, Ono T (2013) Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresour Technol 127:132–137

    Article  Google Scholar 

  31. Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87(2):1131–1138

    Article  Google Scholar 

  32. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023

    Article  Google Scholar 

  33. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Article  Google Scholar 

  34. Lan W, Liu C-F, Yue F-X, Sun R-C, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydr Polym 86(2):672–677

    Article  Google Scholar 

  35. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  Google Scholar 

Download references

Acknowledgments

Trilokesh C. gratefully acknowledges the CSIR, India, for the senior research fellowship. KBU and AA greatly acknowledge the financial support from the DST/SERB, India (EEQ/2019/000245 and ECR/2017/001038). We also thank the SAIF and Department of Chemistry at IIT Madras for performing solid-state NMR, SEM, XRD, and thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiran Babu Uppuluri or A. Arumugam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malolan, V.V., Trilokesh, C., Uppuluri, K.B. et al. Ionic liquid assisted the extraction of cellulose from de-oiled Calophyllum inophyllum cake and its characterization. Biomass Conv. Bioref. 12, 5687–5693 (2022). https://doi.org/10.1007/s13399-020-01007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01007-2

Keywords

Navigation