Skip to main content
Log in

Thermally stable polyaniline and Mn0.25Co0.75Fe2O4 nanocomposite as an efficient material for high frequency applications at room temperature

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ferrimagnetic Mn0.25Co0.75Fe2O4 (MCF) nanoparticles were synthesized via sol–gel autocombustion method. Polyaniline (PANI) and PANI nanocomposites with MCF as filler (PANI/MCF) were synthesized through chemical oxidative in-situ polymerization of aniline under the presence of varying weight percentage of the MCF (10%, 20% and 50%). The MCF, PANI and PANI/MCF nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analyzer (TGA), field emission scanning electron microscopy equipped with elemental detection (FESEM-EDAX) and vibrating sample magnetometer. The XRD and FTIR spectra confirmed the formation of pure phase with high crystallinity for all the samples. TGA study showed the increased thermal stability of PANI with addition of MCF. MCF and PANI/MCF nanocomposites showed ferrimagnetic hysteresis loop under external magnetic field at room temperature. Additionally, the ac conductivity, dielectric and electrical properties as a function of frequency ranging from 100 Hz to 120 MHz, were investigated for all the samples using impedance analyzer at room temperature. Dielectric, TGA and magnetic studies showed that PANI/MCF with 50 weight percentage of MCF has maximum ac conductivity, thermal stability and moderate magnetic properties. Hence, it could be a potential candidate to be used as dielectric material in high frequency capacitors and for electromagnetic interference shielding material at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1:225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  2. Liu P, Yan J, Guang Z et al (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130. https://doi.org/10.1016/j.jpowsour.2019.03.094

    Article  CAS  Google Scholar 

  3. Paul SJ, Gupta BK, Chandra P (2021) Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids. Polym Bull 78:5667–5683. https://doi.org/10.1007/s00289-020-03399-7

    Article  CAS  Google Scholar 

  4. Baykal A, Günay M, Toprak MS, Sozeri H (2013) Effect of ionic liquids on the electrical and magnetic performance of polyaniline–nickel ferrite nanocomposite. Mater Res Bull 48:378–382. https://doi.org/10.1016/j.materresbull.2012.10.039

    Article  CAS  Google Scholar 

  5. Divya V, Sangaranarayanan MV (2012) A facile synthetic strategy for mesoporous crystalline copper–polyaniline composite. Eur Polym J 48:560–568. https://doi.org/10.1016/j.eurpolymj.2011.12.009

    Article  CAS  Google Scholar 

  6. Nikumbh AK, Pawar RA, Nighot DV et al (2014) Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 355:201–209. https://doi.org/10.1016/j.jmmm.2013.11.052

    Article  CAS  Google Scholar 

  7. Narang SB, Pubby K (2021) Nickel spinel ferrites: a review. J Magn Magn Mater 519:167163. https://doi.org/10.1016/j.jmmm.2020.167163

    Article  CAS  Google Scholar 

  8. Kamran M, Anis-ur-Rehman M (2020) Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J Alloys Compd 822:153583. https://doi.org/10.1016/j.jallcom.2019.153583

    Article  CAS  Google Scholar 

  9. Vinosha PA, Manikandan A, Ceicilia ASJ et al (2021) Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram Int 47:10512–10535. https://doi.org/10.1016/j.ceramint.2020.12.289

    Article  CAS  Google Scholar 

  10. Vinosha PA, Manikandan A, Preetha AC et al (2021) Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J Supercond Nov Magn 34:995–1018. https://doi.org/10.1007/s10948-021-05854-6

    Article  CAS  Google Scholar 

  11. Akhlaghi N, Najafpour-Darzi G (2021) Manganese ferrite (MnFe2O4) nanoparticles: from synthesis to application-a review. J Ind Eng Chem 103:292–304. https://doi.org/10.1016/j.jiec.2021.07.043

    Article  CAS  Google Scholar 

  12. Bashir B, Shaheen W, Asghar M et al (2017) Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications. J Alloys Compd 695:881–887. https://doi.org/10.1016/j.jallcom.2016.10.183

    Article  CAS  Google Scholar 

  13. Sahoo B, Devi KSP, Dutta S et al (2014) Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci 431:31–41. https://doi.org/10.1016/j.jcis.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain energy Rev 16:2920–2925. https://doi.org/10.1016/j.rser.2012.02.012

    Article  CAS  Google Scholar 

  15. Ramakrishnaiah T, Dhananjaya PG, Sainagesh CV et al (2022) A review: electrical and gas sensing properties of polyaniline/ferrite nanocomposites. Sens Rev. https://doi.org/10.1108/SR-02-2021-0051

    Article  Google Scholar 

  16. Ghasemi AK, Ghorbani M, Lashkenari MS, Nasiri N (2022) Controllable synthesis of zinc ferrite nanostructure with tunable morphology on polyaniline nanocomposite for supercapacitor application. J Energy Storage 51:104579. https://doi.org/10.1016/j.est.2022.104579

    Article  Google Scholar 

  17. Yadav A, Kumar H, Sharma R, Kumari R (2021) Influence of polyaniline on the photocatalytic properties of metal nanocomposites: a review. Colloid Interface Sci Commun 40:100339. https://doi.org/10.1016/j.colcom.2020.100339

    Article  CAS  Google Scholar 

  18. Saini M, Shukla R (2020) Silver nanoparticles-decorated NiFe2O4/polyaniline ternary nanocomposite for electromagnetic interference shielding. J Mater Sci Mater Electron 31:5152–5164. https://doi.org/10.1007/s10854-020-03075-6

    Article  CAS  Google Scholar 

  19. Kazantseva NE, Babayan V, Shishov MA et al (2018) Radio-absorbers based on MnZn-ferrite and polyaniline. In: 2018 IEEE International conference on electrical engineering and photonics (EExPolytech). IEEE, pp 164–167. https://doi.org/10.1109/EExPolytech.2018.8564379

  20. Yadav RS, Kuřitka I, Vilčáková J (2020) Advanced spinel ferrite nanocomposites for electromagnetic interference shielding applications. Elsevier

    Google Scholar 

  21. Ahmed I, Khan AN, Jan R, Gul IH (2022) Structure–properties relationships of graphene and spinel nickel ferrites based poly (vinylidene fluoride) hybrid polymer nanocomposites for improved dielectric and EMI shielding characteristics. Mater Res Bull 148:111687. https://doi.org/10.1016/j.materresbull.2021.111687

    Article  CAS  Google Scholar 

  22. Menon SS, Krishna R, Wilson L et al (2018) Magnetic and dielectric properties of nickel-ferrite-embedded natural rubber composites. Polym Bull 75:5217–5234. https://doi.org/10.1007/s00289-018-2323-0

    Article  CAS  Google Scholar 

  23. Elashmawi IS, Ismail AM (2023) Study of the spectroscopic, magnetic, and electrical behavior of PVDF/PEO blend incorporated with nickel ferrite (NiFe2O4) nanoparticles. Polym Bull 80:2329–2348. https://doi.org/10.1007/s00289-022-04139-9

    Article  CAS  Google Scholar 

  24. Lei Y, Yao Z, Lin H et al (2019) Synthesis and enhanced microwave absorption properties of urchin-like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites. Polym Bull 76:3113–3125. https://doi.org/10.1007/s00289-018-2541-5

    Article  CAS  Google Scholar 

  25. Lagashetty A, Muttin V, Patil MK, Ganiger SK (2021) Synthesis, characterization and studies of BaFe2O4/PMMA nanocomposite. Polym Bull 78:5905–5921. https://doi.org/10.1007/s00289-020-03403-0

    Article  CAS  Google Scholar 

  26. Zeshan M, Ali M, Alanazi MM et al (2023) Study of SrEr0.04Fe1.96O4/PANI nano-composites for high-frequency applications. Ceram Int 49:20536–20543. https://doi.org/10.1016/j.ceramint.2023.03.183

    Article  CAS  Google Scholar 

  27. Chitra P, Muthusamy A, Jayaprakash R (2015) Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites. J Magn Magn Mater 396:113–120. https://doi.org/10.1016/j.jmmm.2015.08.042

    Article  CAS  Google Scholar 

  28. Kaur B, Tanwar R, Mandal UK (2021) Effect of calcination and surface functionalization of nanoparticles on structural, magnetic and electrical properties of polyaniline Ni0.5Zn0.5Fe2O4 nanocomposites. Colloids Surfaces A Physicochem Eng Asp 628:127273. https://doi.org/10.1016/j.colsurfa.2021.127273

    Article  CAS  Google Scholar 

  29. Saini M, Shukla R (2021) Investigation of structural, thermal, and electrical properties of magnesium substituted cobalt ferrite reinforced polyaniline nanocomposites. Ceram Int 47:33835–33842. https://doi.org/10.1016/j.ceramint.2021.08.295

    Article  CAS  Google Scholar 

  30. Kaur B, Tanwar R, Mandal UK (2020) Effect of nanoparticles concentration on thermal, magnetic and electrical properties of Ni0.5Zn0.5Fe2O4 based polyaniline nanocomposites by in-situ polymerisation. Colloids Surf A Physicochem Eng Asp 599:124798. https://doi.org/10.1016/j.colsurfa.2020.124798

    Article  CAS  Google Scholar 

  31. Joshi A, Srivastava RC (2023) Study of structural, electrical, and magnetic properties of Co-Zn ferrite and Co-Zn ferrite/polythiophene nanocomposite. Mater Today Proc 78:774–779. https://doi.org/10.1016/j.matpr.2022.10.242

    Article  CAS  Google Scholar 

  32. Joshi CS, Srivastava RC, Joshi A (2023) Polyaniline/manganese-cobalt ferrite nanocomposite as an efficient material for crystal violet dye degradation under sunlight irradiation. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.04.462

    Article  Google Scholar 

  33. Wang Z, Han J-J, Zhang N et al (2019) Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J Solid State Electrochem 23:3373–3382. https://doi.org/10.1007/s10008-019-04435-x

    Article  CAS  Google Scholar 

  34. Ali H (2020) Ternary system from mesoporous CdS–ZnS modified with polyaniline for removal of cationic and anionic dyes. Res Chem Intermed 46:571–592. https://doi.org/10.1007/s11164-019-03968-0

    Article  CAS  Google Scholar 

  35. Ali H (2019) Facile synthesis of mesoporous TiO2-CdS-polyaniline ternary system with improved optical properties. Mater Res Express 6:115529. https://doi.org/10.1088/2053-1591/ab4acf

    Article  Google Scholar 

  36. Zhang N, Zhao R, He D et al (2019) Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J Alloys Compd 784:244–255. https://doi.org/10.1016/j.jallcom.2018.12.341

    Article  CAS  Google Scholar 

  37. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384. https://doi.org/10.1002/(SICI)1097-0126(199704)42:4%3C380::AID-PI727%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  38. Liu X-M, Fu S-Y (2007) Synthesis of nanocrystalline Zn0.5Mn0.5Fe2O4 via in situ polymerization technique. J Magn Magn Mater 308:61–64. https://doi.org/10.1016/j.jmmm.2006.05.003

    Article  CAS  Google Scholar 

  39. Chaubisa P, Dharmendra D, Vyas Y et al (2023) Synthesis and characterization of PANI and PANI-indole copolymer and study of their antimalarial and antituberculosis activity. Polym Bull. https://doi.org/10.1007/s00289-023-04873-8

    Article  Google Scholar 

  40. Rathore BS, Chauhan NPS, Rawal MK et al (2020) Chitosan–polyaniline–copper (II) oxide hybrid composite for the removal of methyl orange dye. Polym Bull 77:4833–4850. https://doi.org/10.1007/s00289-019-02994-7

    Article  CAS  Google Scholar 

  41. Nasir A, Raza A, Tahir M et al (2023) Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Mater Res Bull 157:112006. https://doi.org/10.1016/j.materresbull.2022.112006

    Article  CAS  Google Scholar 

  42. Srishailam K, Balakrishna A, Reddy BV, Rao GR (2023) Insights into structural and vibrational characteristics of 1-methoxy-4-[2-(phenylsulfonyl) vinyl] benzene: an application of experimental vibrational spectroscopy and density functional theory. J Mol Struct 1286:135572. https://doi.org/10.1016/j.molstruc.2023.135572

    Article  CAS  Google Scholar 

  43. Ramadan R, Uskoković V, El-Masry MM (2023) Triphasic CoFe2O4/ZnFe2O4/CuFe2O4 nanocomposite for water treatment applications. J Alloys Compd 954:170040. https://doi.org/10.1016/j.jallcom.2023.170040

    Article  CAS  Google Scholar 

  44. AL-Hammadi AH, Khoreem SH, Al-ryani WF (2022) Investigation of Zn substituted Ba-W-type base ferrites for FT-IR structural and vibrational studies. https://doi.org/10.33263/LIANBS124.164

  45. Gopalan AI, Lee K-P, Santhosh P et al (2007) Different types of molecular interactions in carbon nanotube/conducting polymer composites–a close analysis. Compos Sci Technol 67:900–905. https://doi.org/10.1016/j.compscitech.2006.02.036

    Article  CAS  Google Scholar 

  46. Safaa K (2013) El-Mahy, M. Dawy and E. Abd El-Aziz J Appl Sci Res 9:2918–2926

    Google Scholar 

  47. Khairy M (2014) Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth Met 189:34–41. https://doi.org/10.1016/j.synthmet.2013.12.022

    Article  CAS  Google Scholar 

  48. Ajmal M, Islam MU (2017) Structural, optical and dielectric properties of polyaniline-Nio.5Zno.5Fe2O4 nano-composites. Phys B Condens Matter 521:355–360. https://doi.org/10.1016/j.physb.2017.07.010

    Article  CAS  Google Scholar 

  49. Tareev BM (1975) Physics of dielectric materials. Mir

  50. Perepechko II (1981) An introduction to polymer physics. Imported Publication

  51. Paul BK, Roy D, Manna S et al (2018) High dielectric response of cobalt aluminate mullite (CAM) nanocomposite over cobalt aluminate mullite polymer (CAMP) nanocomposite in PVDF matrix. J Electroceramics 40:347–359. https://doi.org/10.1007/s10832-018-0136-z

    Article  CAS  Google Scholar 

  52. Siwatch P, Sharma K, Manyani N et al (2021) Characterization of nanostructured nickel cobalt oxide-polyvinyl alcohol composite films for supercapacitor application. J Alloys Compd 872:159409. https://doi.org/10.1016/j.jallcom.2021.159409

    Article  CAS  Google Scholar 

  53. Furhan, Ramesan MT (2022) Enhanced dielectric properties, thermal stability and ammonia sensing performance of poly (diphenylamine)/zinc oxide nanocomposites via one step polymerization. J Appl Polym Sci 139:e52913. https://doi.org/10.1002/app.52913

    Article  CAS  Google Scholar 

  54. Khan MZ, Gul IH, Baig MM, Akram MA (2023) Facile synthesis of a multifunctional ternary SnO2/MWCNTs/PANI nanocomposite: detailed analysis of dielectric, electrochemical, and water splitting applications. Electrochim Acta 441:141816. https://doi.org/10.1016/j.electacta.2023.141816

    Article  CAS  Google Scholar 

  55. Huang X, Zhi C, Jiang P et al (2012) Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23:455705. https://doi.org/10.1088/0957-4484/23/45/455705

    Article  CAS  PubMed  Google Scholar 

  56. Channa N, Khalid M, Chandio AD et al (2020) Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications. J Mater Sci Mater Electron 31:1661–1671. https://doi.org/10.1007/s10854-019-02684-0

    Article  CAS  Google Scholar 

  57. Sahoo A, Paul T, Nath A et al (2023) Preferential perovskite surface-termination induced high piezoresponse in lead-free in-situ fabricated Cs3Bi2Br9-PVDF nanocomposites promotes biomechanical energy harvesting. Nanoscale. https://doi.org/10.1039/D3NR01517C

    Article  PubMed  Google Scholar 

  58. Paswan SK, Pradhan LK, Kumar P et al (2022) Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study. Phys Scr 97:95812. https://doi.org/10.1088/1402-4896/ac87dc

    Article  CAS  Google Scholar 

  59. Heiba ZK, Mohamed MB, Ghannam MM, Ahmed SI (2021) Influence of iron substitution on structural and dielectric properties of nano ZnMn2O4. Appl Phys A 127:436. https://doi.org/10.1007/s00339-021-04590-x

    Article  CAS  Google Scholar 

  60. Sagadevan S, Johan MR, Lett JA (2019) Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance. Appl Phys A 125:1–11. https://doi.org/10.1007/s00339-019-2625-6

    Article  CAS  Google Scholar 

  61. Cao Z, Zhao J, Fan J et al (2021) Colossal permittivity of (Gd + Nb) co-doped TiO2 ceramics induced by interface effects and defect cluster. Ceram Int 47:6711–6719. https://doi.org/10.1016/j.ceramint.2020.11.012

    Article  CAS  Google Scholar 

  62. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer Science & Business Media, Berlin

    Google Scholar 

  63. Tiwari B, Babu T, Choudhary RNP (2020) Dielectric, impedance and modulus spectroscopy of Pb (Zr0.52−x CexTi0.48)O3 (x = 0.00, 0.10) ferroelectric ceramics. Phys Scr 95:115806. https://doi.org/10.1088/1402-4896/abbc9e

    Article  CAS  Google Scholar 

  64. Joshi A, Srivastava RC, Dhyani R, Joshi CS (2023) Structural, magnetic, and dielectric properties of yttrium doped cobalt ferrite and their nanocomposites with polythiophene. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2023.170812

    Article  Google Scholar 

  65. Walter GW (1986) A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros Sci 26:681–703. https://doi.org/10.1016/0010-938X(86)90033-8

    Article  CAS  Google Scholar 

  66. Lee Y-M, Huang C-M, Chen H-W, Yang H-W (2013) Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens Actuators A Phys 189:307–312. https://doi.org/10.1016/j.sna.2012.10.012

    Article  CAS  Google Scholar 

  67. Dyre JC, Schrøder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72:873. https://doi.org/10.1103/RevModPhys.72.873

    Article  Google Scholar 

  68. Papathanassiou AN, Sakellis I, Grammatikakis J (2007) Universal frequency-dependent ac conductivity of conducting polymer networks. Appl Phys Lett 91:122911. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

Download references

Acknowledgements

C. S. Joshi would like to thank University Grant Commission (UGC), India, for providing junior research fellowship (JRF). First author would like to heartly acknowledge the material research centre (MRC), Malaviya National Institute of Technology (MNIT) Jaipur for providing dielectric measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekhar Joshi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest or any issue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, C.S., Srivastava, R.C. & Joshi, A. Thermally stable polyaniline and Mn0.25Co0.75Fe2O4 nanocomposite as an efficient material for high frequency applications at room temperature. Polym. Bull. 81, 5421–5442 (2024). https://doi.org/10.1007/s00289-023-04955-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04955-7

Keywords

Navigation