Skip to main content

Advertisement

Log in

Nanostructures and biomaterials based on silk polymer for medical diagnostic and therapeutic applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Today, SF is a natural polymer with unique features, such as excellent mechanical properties, biocompatibility, biodegradability, and low toxicity, which characterize this material with diverse forms for different purposes. Silk nanoparticles, scaffolds, films, and mats are used in various therapeutic and diagnostic strategies including drug/gene delivery, tissue engineering, biomolecule detection, and wound healing. Therefore, a study that examines all SF applications and evaluates its toxicity helps researchers in future projects. In this study, we comprehensively searched all sources of databases in different years about the medical application of various types of SF. Also, we reviewed the toxicity of SF. Several newer papers were selected for reporting and conclusions. In conclusion, the evaluation of the literature revealed that SF is a promising candidate for a wide range of biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

5-FU:

5-Fluorouracil

Aβ1–40:

40-Aminoacid-long amyloid-β peptides

ACL:

Anterior cruciate ligament

AIHA:

Autoimmune hemolytic anemia

BFGF:

Basic fibroblast growth factor

CBMN:

Cytokinesis-blocked micronucleus

Ce6:

Chlorin e6

CHO-K1:

Comet assay using Chinese hamster ovary cells

CM:

Cardiomyocyte

DOX:

Doxorubicin

DPSCs:

Dental pulp stem cells

ECM:

Extracellular matrix

EGF:

Endothelial growth factor

G-EFT:

Graphene-based field-effect transistors

GO:

Graphene oxide

Gox:

Glucose oxidase

HCV:

Hepatitis C virus

HRP:

Horseradish peroxidase

HMSCs:

Human mesenchymal stem cells

HUVECs:

Human umbilical vein endothelial cells

LbL:

Layer-by-layer

MAbIMUG:

Monoclonal antibodies against human immunoglobulin

MCF-7:

Michigan cancer foundation

MSPPs:

Magnetic-silk/PEI core–shell nanoparticles

MI:

Myocardial infarction

NO:

Nitric oxide

NP:

Nanoparticle

ODNs:

Oligodeoxynucleotides

OECs:

Olfactory ensheathing cells

PCL:

Polycaprolactone

PDMS:

Polydimethylsiloxane

pDNA:

Plasmid deoxyribonucleic acid

PDT:

Photodynamic therapy

PEDOT:

Poly (3, 4 ethylenedioxythiophene)

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PLGA:

Polylactic-co-glycolic acid

PLGA-SF-COL:

PLGA-SF-collagen

RBCs:

Red blood cells

SF:

SF

SF/HAp:

SF/hydroxyapatite

SF-HT-3GEN:

SF-based nanofibrous hardystonite-gentamicin

SNAP:

S-Nitroso-N-acetylpenicillamine

SPP:

Silk–polyethyleneimine

TGF-β3:

Transforming growth factor beta-3

THP:

Tumor-homing peptides

TiO2:

Titanium dioxide

UTS:

Ultimate tensile strength

VEGF:

Vascular endothelial growth factor

References

  1. Lewis R (1996) Unraveling the weave of spider silk. Bioscience 46(9):636–638. https://doi.org/10.2307/1312891

    Article  Google Scholar 

  2. Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB (2019) Insight into silk-based biomaterials: from physicochemical attributes to recent biomedical applications. ACS Appl Bio Mater 2(12):5460–5491. https://doi.org/10.1021/acsabm.9b00576

    Article  CAS  PubMed  Google Scholar 

  3. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Helen Lu, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416. https://doi.org/10.1016/S0142-9612(02)00353-8

    Article  CAS  PubMed  Google Scholar 

  4. Zhu B, Li W, Lewis RV, Segre CU, Wang R (2015) E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Biomacromol 16(1):202–213. https://doi.org/10.1021/bm501403f

    Article  CAS  Google Scholar 

  5. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2(6):e514. https://doi.org/10.1371/journal.pone.0000514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shimura K, Kikuchi A, Ohtomo K, Yōtarō KATAGATA, Hyodo A (1976) Studies on silk fibroin of Bombyx mori. I. Fractionation of fibroin prepared from the posterior silk gland. J Biochem 80(4):693–702. https://doi.org/10.1093/oxfordjournals.jbchem.a131328

    Article  CAS  PubMed  Google Scholar 

  7. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  8. Engler AJ, Shamik Sen H, Sweeney L, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  9. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400. https://doi.org/10.1002/hep.22193

    Article  CAS  PubMed  Google Scholar 

  10. Tran TT, Hamid ZA, Cheong KY (2018) A review of mechanical properties of scaffold in tissue engineering: aloe vera composites. J Phys: Conf Ser. IOP Publishing

  11. Azizah Intan Pangesty and Mitsugu Todo (2021) Improvement of mechanical strength of tissue engineering scaffold due to the temperature control of polymer blend solution. J Funct Biomater 12(3):47. https://doi.org/10.3390/jfb12030047

    Article  CAS  PubMed  Google Scholar 

  12. Winkler S, Kaplan DL (2000) Molecular biology of spider silk. Rev Mol Biotechnol 74(2):85–93. https://doi.org/10.1016/S1389-0352(00)00005-2

    Article  CAS  Google Scholar 

  13. Cunniff PM, Fossey SA, Auerbach MA, Song JW, Kaplan DL, Wade Adams W, Eby RK, Mahoney D, Vezie DL (1994) Mechanical and thermal properties of dragline silk from the spider nephila clavipes. Polym Adv Technol 5(8):401–410. https://doi.org/10.1002/pat.1994.220050801

    Article  CAS  Google Scholar 

  14. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim H-J, Kim HS, Kirker-Head C, Kaplan DL (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428. https://doi.org/10.1016/j.biomaterials.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524. https://doi.org/10.1038/nmat1421

    Article  CAS  PubMed  Google Scholar 

  16. Afjeh-Dana E, Naserzadeh P, Nazari H, Mottaghitalab RSF, Naser BA, Mehravi F, Tajik MTR, Joghataei K, Mousavizadeh (2019) Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications. Int J Biol Macromol 129:1034–1039. https://doi.org/10.1016/j.ijbiomac.2019.02.050

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Cao C, Ma X, Lan Hu, Chen L, Wang C (2010) In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds. Polym Degrad Stab 95(9):1679–1685. https://doi.org/10.1016/j.polymdegradstab.2010.05.025

    Article  CAS  Google Scholar 

  18. Johari N, Moroni L, Samadikuchaksaraei A (2020) Tuning the conformation and mechanical properties of silk fibroin hydrogels. Eur Polym J 134:109842. https://doi.org/10.1016/j.eurpolymj.2020.109842

    Article  CAS  Google Scholar 

  19. Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75. https://doi.org/10.1016/j.biomaterials.2015.04.047

    Article  CAS  PubMed  Google Scholar 

  20. Scaffaro R, Lopresti F, Maio A, Sutera F, Botta L (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 15(2):107–121. https://doi.org/10.5301/jabfm.5000332

    Article  CAS  Google Scholar 

  21. Zhou J, Cao C, Ma X (2009) A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int J Biol Macromol 45(5):504–510. https://doi.org/10.1016/j.ijbiomac.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  22. Akturk O, Kismet K, Yasti AC, Kuru S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. Rsc Adv 6(16):13234–13250. https://doi.org/10.1039/C5RA24225H

    Article  CAS  Google Scholar 

  23. Naskar D, Ghosh AK, Mandal M, Das P, Nandi SK, Kundu SC (2017) Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 136:67–85. https://doi.org/10.1016/j.biomaterials.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  24. Reeves ARD, Spiller KL, Freytes DO, Vunjak-Novakovic G, Kaplan DL (2015) Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials 73:272–283. https://doi.org/10.1016/j.biomaterials.2015.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi P, Goh JCH (2011) Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm 420(2):282–289. https://doi.org/10.1016/j.ijpharm.2011.08.051

    Article  CAS  PubMed  Google Scholar 

  26. Long K, Liu Y, Li W, Wang L, Liu Sa, Wang Y, Wang Z, Ren Li (2015) Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res, Part A 103(3):1159–1168. https://doi.org/10.1002/jbm.a.35268

    Article  CAS  Google Scholar 

  27. Afjeh-Dana E, Ashtari K, Amini N (2019) Scaffolds for tarsal repair in eyelids, In: Handbook of tissue engineering scaffolds: Volume Two. Elsevier, pp 721–738. https://doi.org/10.1016/B978-0-08-102561-1.00030-0

  28. Hong H, Seo YB, Lee JS, Lee YJ, Lee H, Olatunji Ajiteru Md, Sultan T, Lee OJ, Kim SH et al (2020) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232:119679. https://doi.org/10.1016/j.biomaterials.2019.119679

    Article  CAS  PubMed  Google Scholar 

  29. Park YR, Hyung Woo Ju, Lee JM, Kim D-K, Lee OJ, Moon BM, Park HJ, Jeong JY, Yeon YK et al (2016) Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int J Biol Macromol 93:1567–1574. https://doi.org/10.1016/j.ijbiomac.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  30. Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36(1):68–91. https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Cao C, Ma X, Lin J (2010) Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 47(4):514–519. https://doi.org/10.1016/j.ijbiomac.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  32. Boni R, Ali A, Giteru SG, Shavandi A, Clarkson AN (2020) Silk fibroin nanoscaffolds for neural tissue engineering. J Mater Sci: Mater Med 31(9):1–17. https://doi.org/10.1007/s10856-020-06422-5

    Article  CAS  Google Scholar 

  33. Afjeh-Dana E, Ashtari K, Milan PB (2019) Scaffolds for auditory nerve regeneration, In: Handbook of tissue engineering scaffolds: volume two, Elsevier, pp 123–143. https://doi.org/10.1016/B978-0-08-102561-1.00005-1

  34. Bhardwaj N, Kundu SC (2012) Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33(10):2848–2857. https://doi.org/10.1016/j.biomaterials.2011.12.028

    Article  CAS  PubMed  Google Scholar 

  35. Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib NM, Belton DJ, Perry CC, Kaplan DL (2010) Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 31(34):8902–8910. https://doi.org/10.1016/j.biomaterials.2010.07.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vollrath F, Porter D (2009) Silks as ancient models for modern polymers. Polymer 50(24):5623–5632. https://doi.org/10.1016/j.polymer.2009.09.068

    Article  CAS  Google Scholar 

  37. Mahmoodi NM, Arami M (2009) Numerical finite volume modeling of dye decolorization using immobilized titania nanophotocatalysis. Chem Eng J 146(2):189–193. https://doi.org/10.1016/j.cej.2008.05.036

    Article  CAS  Google Scholar 

  38. Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:145–157. https://doi.org/10.1016/j.biomaterials.2015.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng Y, Lin J, Niu L, Wang Y, Cheng Z, Sun X, Li M (2020) High molecular weight silk fibroin prepared by papain degumming. Polymers 12(9):2105. https://doi.org/10.3390/polym12092105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dou H, Zuo B (2015) Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J Text Ins 106(3):311–319. https://doi.org/10.1080/00405000.2014.919065

    Article  CAS  Google Scholar 

  41. Arami M, Rahimi S, Mivehie L, Mazaheri F, Mahmoodi NM (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106(1):267–275. https://doi.org/10.1002/app.26492

    Article  CAS  Google Scholar 

  42. Chung-haur Howard Lo (2020) Degumming silk by CO2 supercritical fluid and their dyeing ability with plant indigo. Int J Cloth Sci Technol. https://doi.org/10.1108/IJCST-06-2019-0072

    Article  Google Scholar 

  43. Khan MMR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H (2010) Physical properties and dyeability of silk fibers degummed with citric acid. Biores Technol 101(21):8439–8445. https://doi.org/10.1016/j.biortech.2010.05.100

    Article  CAS  Google Scholar 

  44. Wang R, Zhu Y, Shi Z, Jiang W, Liu X, Ni Q-Q (2018) Degumming of raw silk via steam treatment. J Clean Prod 203:492–497. https://doi.org/10.1016/j.jclepro.2018.08.286

    Article  CAS  Google Scholar 

  45. Kim HJ, Kim MK, Lee KH, Nho SK, Han MS, Um IC (2017) Effect of degumming methods on structural characteristics and properties of regenerated silk. Int J Biol Macromol 104:294–302. https://doi.org/10.1016/j.ijbiomac.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  46. Mahmoodi NM, Arami M, Mazaheri F, Rahimi S (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 8(2):146–151. https://doi.org/10.1016/j.jclepro.2009.10.003

    Article  CAS  Google Scholar 

  47. Guzmán Carissimi A, Lozano-Pérez A, Montalbán MG, Aznar-Cervantes SD, Cenis JL, Víllora G (2019) Revealing the influence of the degumming process in the properties of silk fibroin nanoparticles. Polymers 11(12):2045. https://doi.org/10.3390/polym11122045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pandey S, Son N, Kim S, Balakrishnan D, Kang M (2022) Locust Bean gum-based hydrogels embedded magnetic iron oxide nanoparticles nanocomposite: advanced materials for environmental and energy applications. Environ Res 214:114000. https://doi.org/10.1016/j.envres.2022.114000

    Article  CAS  PubMed  Google Scholar 

  49. Sargazi S, Laraib U, Barani M, Rahdar A, Fatima I, Bilal M, Pandey S, Sharma RK, Kyzas GZ (2022) Recent trends in the mesoporous silica nanoparticles with rode-like morphology for cancer theranostics: a review. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.132922

    Article  Google Scholar 

  50. Saman Sargazi ER, Simge SS, Gelen AR, Bilal M, Arshad R, Ajalli N, Khan MFA, Pandey S (2022) Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: an updated and comprehensive review. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2022.103605

    Article  Google Scholar 

  51. Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S (2022) Polymer-based hybrid nanoarchitectures for cancer therapy applications. Polymers 14(15):3027. https://doi.org/10.3390/polym14153027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S (2022) Nano-based theranostic platforms for breast cancer: a review of latest advancements. Bioengineering 9(7):320. https://doi.org/10.3390/bioengineering9070320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Philipp Seib F, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL (2013) pH-dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater 2(12):1606–1611. https://doi.org/10.1002/adhm.201300034

    Article  CAS  PubMed  Google Scholar 

  54. Wang Qi, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27(9):1605657. https://doi.org/10.1002/adfm.201605657

    Article  CAS  Google Scholar 

  55. Choi M, Choi D, Hong J (2018) Multilayered controlled drug release silk fibroin nanofilm by manipulating secondary structure. Biomacromol 19(7):3096–3103. https://doi.org/10.1021/acs.biomac.8b00687

    Article  CAS  Google Scholar 

  56. Totten JD, Wongpinyochit T, Philipp Seib F (2017) Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. J Drug Target 25(9–10):865–872. https://doi.org/10.1080/1061186X.2017.1363212

    Article  CAS  PubMed  Google Scholar 

  57. Xiao L, Guozhong Lu, Qiang Lu, Kaplan DL (2016) Direct formation of silk nanoparticles for drug delivery. ACS Biomater Sci Eng 2(11):2050–2057. https://doi.org/10.1021/acsbiomaterials.6b00457

    Article  CAS  PubMed  Google Scholar 

  58. Hongchun Wu, Liu S, Xiao L, Dong X, Qiang Lu, Kaplan DL (2016) Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces 8(27):17118–17126. https://doi.org/10.1021/acsami.6b04424

    Article  CAS  Google Scholar 

  59. Wang X, Yucel T, Qiang Lu, Xiao Hu, Kaplan DL (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31(6):1025–1035. https://doi.org/10.1016/j.biomaterials.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  60. Jing Qu, Liu Yu, Yanni Yu, Li J, Luo J, Li M (2014) Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng C 44:166–174. https://doi.org/10.1016/j.msec.2014.08.034

    Article  CAS  Google Scholar 

  61. Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9(5):885–900. https://doi.org/10.1007/s11051-006-9162-x

    Article  CAS  Google Scholar 

  62. Zhao Z, Li Yi, Chen A-Z, Zheng Z-J, Jun-Yan Hu, Li J-S, Li G (2013) Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind Eng Chem Res 52(10):3752–3761. https://doi.org/10.1021/ie301907f|

    Article  CAS  Google Scholar 

  63. Lammel AS, Xiao Hu, Park S-H, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31(16):4583–4591. https://doi.org/10.1016/j.biomaterials.2010.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kazemimostaghim M, Rajkhowa R, Tsuzuki T, Wang X (2013) Ultrafine silk powder from biocompatible surfactant-assisted milling. Powder Technol 249:253–257. https://doi.org/10.1016/j.powtec.2013.08.028

    Article  CAS  Google Scholar 

  65. Myung SJ, Kim H-S, Kim Y, Chen P, Jin H-J (2008) Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromol Res 16(7):604–608. https://doi.org/10.1007/BF03218567

    Article  CAS  Google Scholar 

  66. YongLi HUANG, Qiang LU, MingZhong LI, Bing ZHANG, HeSun ZHU (2011) Silk fibroin microsphere drug carriers perpared under electric fields. Chin Sci Bull 56(13):1013–1018

    Article  Google Scholar 

  67. Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115. https://doi.org/10.2147/ijn.s5581

    Article  CAS  Google Scholar 

  68. Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H, Nanoparticles S (2020) A natural polymeric platform for nitric oxide delivery in biomedical applications. ACS Appl Mater Interfaces 12(48):53615–53623. https://doi.org/10.1021/acsami.0c13813

    Article  CAS  PubMed  Google Scholar 

  69. Wongpinyochit T, Uhlmann P, Urquhart AJ, Philipp Seib F (2015) PEGylated silk nanoparticles for anticancer drug delivery. Biomacromol 16(11):3712–3722. https://doi.org/10.1021/acs.biomac.5b01003

    Article  CAS  Google Scholar 

  70. Subia B, Kundu SC (2012) Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers. Nanotechnology 24(3):035103. https://doi.org/10.1088/0957-4484/24/3/035103

    Article  CAS  PubMed  Google Scholar 

  71. Kundu J, Chung Y-I, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388(1–2):242–250. https://doi.org/10.1016/j.ijpharm.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  72. Herold HM, Döbl A, Wohlrab S, Humenik M, Scheibel T (2020) Designed spider silk-based drug carrier for redox-or pH-triggered drug release. Biomacromol 21(12):4904–4912. https://doi.org/10.1021/acs.biomac.0c01138

    Article  CAS  Google Scholar 

  73. Kim J-H, Sheikh FA, Hyung Woo Ju, Park HJ, Moon BM, Lee OJ, Park CH (2014) 3D silk fibroin scaffold incorporating titanium dioxide (TiO2) nanoparticle (NPs) for tissue engineering. Int J Biol Macromol 68:158–168. https://doi.org/10.1016/j.ijbiomac.2014.04.045

    Article  CAS  PubMed  Google Scholar 

  74. Zafar B, Mottaghitalab F, Shahosseini Z, Negahdari B, Farokhi M (2020) Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia 9:100518. https://doi.org/10.1016/j.mtla.2019.100518

    Article  CAS  Google Scholar 

  75. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354. https://doi.org/10.1016/j.colsurfb.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  76. Guoxu Zhao Xu, Zhang BL, Huang G, Feng Xu, Zhang X (2020) Solvent-free fabrication of carbon nanotube/silk fibroin electrospun matrices for enhancing cardiomyocyte functionalities. ACS Biomater Sci Eng 6(3):1630–1640. https://doi.org/10.1021/acsbiomaterials.9b01682

    Article  CAS  PubMed  Google Scholar 

  77. Yang Yi, Ding X, Zou T, Peng Ge, Liu H, Fan Y (2017) Preparation and characterization of electrospun graphene/silk fibroin conductive fibrous scaffolds. RSC Adv 7(13):7954–7963. https://doi.org/10.1039/C6RA26807B

    Article  CAS  Google Scholar 

  78. Tian L, Prabhakaran MP, Jue Hu, Chen M, Besenbacher F, Ramakrishna S (2015) Coaxial electrospun poly (lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. RSC Adv 5(62):49838–49848. https://doi.org/10.1039/C5RA05773F

    Article  CAS  Google Scholar 

  79. Kim BN, Ko Y-G, Yeo T, Kim EJ, Kwon OK, Kwon OH (2019) Guided regeneration of rabbit calvarial defects using silk fibroin nanofiber-poly (glycolic acid) hybrid scaffolds. ACS Biomater Sci Eng 5(10):5266–5272. https://doi.org/10.1021/acsbiomaterials.9b00678

    Article  CAS  PubMed  Google Scholar 

  80. Nazeer MA, Yilgor E, Yilgor I (2019) Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer 168:86–94. https://doi.org/10.1016/j.polymer.2019.02.023

    Article  CAS  Google Scholar 

  81. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988–1006. https://doi.org/10.1016/j.addr.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  83. Chutipakdeevong J, Ruktanonchai UR, Supaphol P (2013) Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. J Appl Polym Sci 130(5):3634–3644. https://doi.org/10.1002/app.39611

    Article  CAS  Google Scholar 

  84. Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V et al (2014) Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem cell Res Therapy 5(1):1–15. https://doi.org/10.1186/scrt396

    Article  CAS  Google Scholar 

  85. Wang S, Zhang Y, Wang H, Yin G, Dong Z (2009) Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromol 10(8):2240–2244. https://doi.org/10.1021/bm900416b

    Article  CAS  Google Scholar 

  86. Yifeng Yu, Xiaofeng Yu, Tian D, Aixi Yu, Wan Y (2021) Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. Int J Biol Macromol 182:1746–1758. https://doi.org/10.1016/j.ijbiomac.2021.05.166

    Article  CAS  Google Scholar 

  87. Liu X, Chen Bo, Li Y, Kong Y, Ming Gao Lu, Zhang Z, Ning Gu (2021) Development of an electrospun polycaprolactone/silk scaffold for potential vascular tissue engineering applications. J Bioact Compat Polym 36(1):59–76. https://doi.org/10.1177/0883911520973244

    Article  CAS  Google Scholar 

  88. Keirouz A, Zakharova M, Kwon J, Robert C, Koutsos V, Callanan A, Chen X, Fortunato G, Radacsi N (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C 112:110939. https://doi.org/10.1016/j.msec.2020.110939

    Article  CAS  Google Scholar 

  89. Kim SH, Seo YB, Yeon YK, Lee YJ, Park HS, Sultan MT, Lee JM, Lee JS, Lee OJ et al (2020) 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 260:120281. https://doi.org/10.1016/j.biomaterials.2020.120281

    Article  CAS  PubMed  Google Scholar 

  90. Lau K, Akhavan B, Lord MS, Bilek MM, Rnjak-Kovacina J (2020) Dry surface treatments of silk biomaterials and their utility in biomedical applications. ACS Biomater Sci Eng 6(10):5431–5452. https://doi.org/10.1021/acsbiomaterials.0c00888

    Article  CAS  PubMed  Google Scholar 

  91. Chouhan D, Mandal BB (2020) Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater 103:24–51. https://doi.org/10.1016/j.actbio.2019.11.050

    Article  CAS  PubMed  Google Scholar 

  92. Pandey V, Haider T, Jain P, Gupta PN, Soni V (2020) Silk as a leading-edge biological macromolecule for improved drug delivery. J Drug Deliv Sci Technol 55:101294. https://doi.org/10.1016/j.jddst.2019.101294

    Article  CAS  Google Scholar 

  93. Chambre L, Martín-Moldes Z, Parker RN, Kaplan DL (2020) Bioengineered elastin-and silk-biomaterials for drug and gene delivery. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang J, Yin Z, Xue X, Kundu SC, Mo X, Shenzhou Lu (2016) Natural non-mulberry silk nanoparticles for potential-controlled drug release. Int J Mol Sci 17(12):2012. https://doi.org/10.3390/ijms17122012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao B, Liu C, Zheng W, Li X, Ge R, Shen H, Guo X, Lian Q, Shen X et al (2018) Cyclic cRGDfk peptide and Chlorin e6 functionalized silk fibroin nanoparticles for targeted drug delivery and photodynamic therapy. Biomaterials 161:306–320. https://doi.org/10.1016/j.biomaterials.2018.01.045

    Article  CAS  PubMed  Google Scholar 

  96. Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjugate Chem 22(8):1605–1610. https://doi.org/10.1021/bc200170u

    Article  CAS  Google Scholar 

  97. Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X (2019) Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 555:322–336. https://doi.org/10.1016/j.ijpharm.2018.11.030

    Article  CAS  PubMed  Google Scholar 

  98. Khorshidi S, Solouk A, Mazinani S, Mirzadeh H (2016) A review on different approaches for improving cell infiltration in electrospun nanofibrous scaffolds. Pathobiol Res 18(4):1–22. https://doi.org/10.1002/term.1978

    Article  CAS  Google Scholar 

  99. Fergal JO (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  100. Narmatha Christy P, Khaleel Basha S, Sugantha Kumari V, Bashir AKH, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications–a review. J Drug Deliv Sci Technol 55:101452. https://doi.org/10.1016/j.jddst.2019.101452

    Article  CAS  Google Scholar 

  101. Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Qiang AO (2022) Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci 23(16):9206. https://doi.org/10.3390/ijms23169206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tandon S, Kandasubramanian B, Ibrahim SM (2020) Silk-based composite scaffolds for tissue engineering applications. Ind Eng Chem Res 59(40):17593–17611. https://doi.org/10.1021/acs.iecr.0c02195

    Article  CAS  Google Scholar 

  103. Yang M, Shuai Y, He W, Min S, Zhu L (2012) Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Int J Mol Sci 13(6):7762–7775. https://doi.org/10.3390/ijms13067762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang Li, Zhang W, Yejun Hu, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC et al (2021) Systematic review of silk scaffolds in musculoskeletal tissue engineering applications in the recent decade. ACS Biomater Sci Eng 7(3):817–840. https://doi.org/10.1021/acsbiomaterials.0c01716

    Article  CAS  PubMed  Google Scholar 

  105. Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B (2022) Stem cell differentiation into cardiomyocytes: current methods and emerging approaches. Stem cell Rev Rep. https://doi.org/10.1007/s12015-022-10395-z

    Article  PubMed  Google Scholar 

  106. Wang Y, Kim U-J, Blasioli DJ, Kim H-J, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26(34):7082–7094. https://doi.org/10.1016/j.biomaterials.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  107. Li X, Snedeker JG (2013) Wired silk architectures provide a biomimetic ACL tissue engineering scaffold. J Mech Behav Biomed Mater 22:30–40. https://doi.org/10.1016/j.jmbbm.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  108. Hadisi Z, Bakhsheshi-Rad HR, Walsh T, Dehghan MM, Farzad-Mohajeri S, Gholami H, Diyanoush A, Pagan E, Akbari M (2020) In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications. Polym Test 91:106698. https://doi.org/10.1016/j.polymertesting.2020.106698

    Article  CAS  Google Scholar 

  109. Yang J-W, Zhang Y-F, Sun Z-y, Song G-T, Chen Z (2015) Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl 30(2):221–229. https://doi.org/10.1177/0885328215577296

    Article  CAS  PubMed  Google Scholar 

  110. Wang G, Xudong Hu, Lin W, Dong C, Hui Wu (2011) Electrospun PLGA–silk fibroin–collagen nanofibrous scaffolds for nerve tissue engineering. Vitro Cell Develop Biol-Animal 47(3):234–240. https://doi.org/10.1007/s11626-010-9381-4

    Article  CAS  Google Scholar 

  111. Shen Y, Qian Y, Zhang H, Zuo B, Zhenfeng Lu, Fan Z, Zhang P, Zhang F, Zhou C (2010) Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant 19(2):147–158. https://doi.org/10.3727/096368910X492616

    Article  PubMed  Google Scholar 

  112. Gupta P, Kumar M, Bhardwaj N, Kumar JP, Krishnamurthy CS, Nandi SK, Mandal BB (2016) Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS Appl Mater Interfaces 8(25):15874–15888. https://doi.org/10.1021/acsami.6b00783

    Article  CAS  PubMed  Google Scholar 

  113. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protocols 6(10):1612–1631. https://doi.org/10.1038/nprot.2011.379

    Article  CAS  PubMed  Google Scholar 

  114. Mehrotra S, Nandi SK, Mandal BB (2017) Stacked silk-cell monolayers as a biomimetic three dimensional construct for cardiac tissue reconstruction. J Mater Chem B 5(31):6325–6338. https://doi.org/10.1039/C7TB01494E

    Article  CAS  PubMed  Google Scholar 

  115. Yin H, Zhou Y, Jing Xu, Ai S, Cui L, Zhu L (2010) Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta 659(1–2):144–150. https://doi.org/10.1016/j.aca.2009.11.051

    Article  CAS  PubMed  Google Scholar 

  116. Lawrence BD, Omenetto F, Chui K, Kaplan DL (2008) Processing methods to control silk fibroin film biomaterial features. J Mater Sci 43:6967–6985. https://doi.org/10.1007/s10853-008-2961-y

    Article  CAS  Google Scholar 

  117. Prakash NJ, Mane PP, George SM, Kandasubramanian B (2021) Silk fibroin as an immobilization matrix for sensing applications. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00080

    Article  PubMed  Google Scholar 

  118. Meng Xu, Yadavalli VK (2019) Flexible biosensors for the impedimetric detection of protein targets using silk-conductive polymer biocomposites. ACS Sens 4(4):1040–1047. https://doi.org/10.1021/acssensors.9b00230

    Article  CAS  Google Scholar 

  119. Gonçalves JM, Lima LR, Moraes ML, Ribeiro SJL (2016) Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1–40 peptide and silk fibroin thin films. Mater Sci Eng C 68:338–342. https://doi.org/10.1016/j.msec.2016.05.101

    Article  CAS  Google Scholar 

  120. Jia Z, Gong J, Zeng Y, Ran J, Liu J, Wang K, Xie C, Xiong Lu, Wang J (2021) Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv Funct Mater 31(19):2010461. https://doi.org/10.1002/adfm.202010461

    Article  CAS  Google Scholar 

  121. Moraes ML, Lima LR, Vicentini-Oliveira JC, de Aparecida Vitória G, Souza ON, Oliveira ED, Ribeiro SJL (2019) Immunosensor for the diagnostics of autoimmune hemolytic anemia (AIHA) based on immobilization of a monoclonal antibody on a layer of silk fibroin. J Nanosci Nanotechnol 19(7):3772–3776. https://doi.org/10.1166/jnn.2019.16305

    Article  CAS  PubMed  Google Scholar 

  122. Moraes ML, Lima LR, Silva RR, Cavicchioli M, Ribeiro SJL (2013) Immunosensor based on immobilization of antigenic peptide NS5A-1 from HCV and silk fibroin in nanostructured films. Langmuir 29(11):3829–3834. https://doi.org/10.1021/la304404v

    Article  CAS  PubMed  Google Scholar 

  123. Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME (2019) A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Compos Mater 26(1):154–174. https://doi.org/10.1515/secm-2017-0161

    Article  CAS  Google Scholar 

  124. Zheng H, Lin N, He Y, Zuo B (2021) Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor. ACS Appl Mater Interfaces 13(33):40013–40031. https://doi.org/10.1021/acsami.1c08395

    Article  CAS  PubMed  Google Scholar 

  125. Pollini M, Paladini F (2020) Bioinspired materials for wound healing application: the potential of silk fibroin. Materials 13(15):3361. https://doi.org/10.3390/ma13153361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li G, Liu H, Li TianDuo, Wang J (2012) Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Mater Sci Eng C 32(4):627–636. https://doi.org/10.1016/j.msec.2011.12.013

    Article  CAS  Google Scholar 

  127. Gangrade A, Gawali B, Jadi PK, Naidu VG, Mandal BB (2020) Photoelectro active nanocomposite silk hydrogel for spatiotemporal controlled release of chemotherapeutics. Vivo, pp 27905–16. https://doi.org/10.1021/acsami.0c02470

  128. Raia NR, Jia Di, Ghezzi CE, Muthukumar M, Kaplan DL (2020) Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 233:119729. https://doi.org/10.1016/j.biomaterials.2019.119729

    Article  CAS  PubMed  Google Scholar 

  129. Wani SU, Din SP, Gautam Qadrie ZL, Gangadharappa HV (2020) Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-a review. Int J Biol Macromol 163:2145–2161

    Article  CAS  PubMed  Google Scholar 

  130. Wang Z, Haiyang Yu, Zhao Z (2021) Silk fibroin hydrogel encapsulated graphene filed-effect transistors as enzyme-based biosensors. Microchem J 169:106585. https://doi.org/10.1016/j.microc.2021.106585

    Article  CAS  Google Scholar 

  131. Ziadlou R, Rotman S, Teuschl A, Salzer E, Barbero A, Martin I, Alini M, Eglin D, Grad S (2021) Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng C 120:111701. https://doi.org/10.1016/j.msec.2020.111701

    Article  CAS  Google Scholar 

  132. Zheng H, Zuo B (2021) Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 9(5):1238–1258. https://doi.org/10.1039/D0TB02099K

    Article  CAS  PubMed  Google Scholar 

  133. Xiao Hu, Qiang Lu, Sun L, Cebe P, Wang X, Zhang X, Kaplan DL (2010) Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels. Biomacromol 11(11):3178–3188. https://doi.org/10.1021/bm1010504

    Article  CAS  Google Scholar 

  134. Chouhan D, Lohe T-u, Samudrala PK, Mandal BB (2018) In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthc Mater 7(24):1801092. https://doi.org/10.1002/adhm.201801092

    Article  CAS  Google Scholar 

  135. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromol 5(3):786–792

    Article  CAS  Google Scholar 

  136. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2016) Genipin-crosslinked gelatin–silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J Tissue Eng Regenerat Med 10(10):876–887. https://doi.org/10.1002/term.1868

    Article  CAS  Google Scholar 

  137. Wang Y, Niu C, Shi J, Wenlong Yu, Zhu C, Zhang Q, Mizuno M (2021) A carbodiimide cross-linked silk fibroin/sodium alginate composite hydrogel with tunable properties for sustained drug delivery. Macromol Mater Eng 306(11):2100470. https://doi.org/10.1002/mame.202100470

    Article  CAS  Google Scholar 

  138. Lin Y, Xia X, Shang Ke, Elia R, Huang W, Cebe P, Leisk G, Omenetto F, Kaplan DL (2013) Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromol 14(8):2629–2635. https://doi.org/10.1021/bm4004892

    Article  CAS  Google Scholar 

  139. Wen Z, Jiang F, Feng Wu, Yin Z, Kaur K, Chakraborty J, Ghosh S, Shenzhou Lu (2020) Photocurable silk fibroin-polyvinylpyrrolidone hydrogel. Materialia 9:100525. https://doi.org/10.1016/j.mtla.2019.100525

    Article  CAS  Google Scholar 

  140. Kuang D, Jiang F, Feng Wu, Kaur K, Ghosh S, Kundu SC, Shenzhou Lu (2019) Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 134:838–845. https://doi.org/10.1016/j.ijbiomac.2019.05.068

    Article  CAS  PubMed  Google Scholar 

  141. Nier Wu, Huilei Yu, Sun M, Li Z, Zhao F, Ao Y, Chen H (2019) Investigation on the structure and mechanical properties of highly tunable elastomeric silk fibroin hydrogels cross-linked by γ-ray radiation. ACS Appl Bio Mater 3(1):721–734. https://doi.org/10.1021/acsabm.9b01062

    Article  CAS  Google Scholar 

  142. Kim MH, Kim BS, Lee J, Donghwan Cho Oh, Kwon H, Park WH (2017) Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering. Biomater Res 21(1):1–9. https://doi.org/10.1186/s40824-017-0098-2

    Article  CAS  Google Scholar 

  143. Chirila TV, Suzuki S, Papolla C (2017) A comparative investigation of Bombyx mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking. Biotechnol Appl Biochem 64(6):771–781. https://doi.org/10.1002/bab.1552

    Article  CAS  PubMed  Google Scholar 

  144. Grabska-Zielińska S, Sionkowska A (2021) How to improve physico-chemical properties of silk fibroin materials for biomedical applications?—blending and cross-linking of silk fibroin—a review. Materials 14(6):1510. https://doi.org/10.3390/ma14061510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gonzalez ACDO, Costa TF, Andrade ZDA, Medrado ARAP (2016) Wound healing-a literature review. An Bras Dermatol 91:614–620

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ghomi ER, Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136(27):47738. https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  147. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53. https://doi.org/10.1016/j.addr.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  148. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P et al (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166. https://doi.org/10.1016/j.addr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C, James Kirkpatrick C (2010) The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31(27):6959–6967. https://doi.org/10.1016/j.biomaterials.2010.05.057

    Article  CAS  PubMed  Google Scholar 

  150. Ding Z, Zhang Y, Guo P, Duan T, Cheng W, Guo Y, Zheng X, Guozhong Lu, Qiang Lu et al (2021) Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing. ACS Biomater Sci Eng 7(3):1147–1158. https://doi.org/10.1021/acsbiomaterials.0c01502

    Article  CAS  PubMed  Google Scholar 

  151. Wang Q, Shuiqing Zhou Lu, Wang RY, Yan S, Zhang Q, Li M (2021) Bioactive silk fibroin scaffold with nanoarchitecture for wound healing. Compos Part B: Eng 224:109165. https://doi.org/10.1016/j.compositesb.2021.109165

    Article  CAS  Google Scholar 

  152. Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL (2018) Overview of silk fibroin use in wound dressings. Trends Biotechnol 36(9):907–922. https://doi.org/10.1016/j.tibtech.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  153. Park YR, Sultan MT, Park HJ, Lee JM, Hyung Woo Ju, Lee OJ, Lee DJ, Kaplan DL, Park CH (2018) NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 67:183–195. https://doi.org/10.1016/j.actbio.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  154. He S, Shi D, Han Z, Dong Z, Xie Y, Zhang F, Zeng WenXin, Yi Q (2019) Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed Eng Online 18(1):1–12. https://doi.org/10.1186/s12938-019-0716-4

    Article  CAS  Google Scholar 

  155. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioengineering perspectives. Progress Polym Sci 39(2):251–267. https://doi.org/10.1016/j.progpolymsci.2013.09.002

    Article  CAS  Google Scholar 

  156. Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromol 12(6):2137–2144. https://doi.org/10.1021/bm200221u

    Article  CAS  Google Scholar 

  157. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064. https://doi.org/10.1016/j.biomaterials.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  158. Leal-Egana A, Scheibel T (2012) Interactions of cells with silk surfaces. J Mater Chem 22(29):14330–14336. https://doi.org/10.1039/C2JM31174G

    Article  CAS  Google Scholar 

  159. Deptuch T, Florczak A, Lewandowska A, Leporowska E, Penderecka K, Marszalek A, Mackiewicz A, Dams-Kozlowska H (2021) MS1-type bioengineered spider silk nanoparticles do not exhibit toxicity in an in vivo mouse model. Nanomedicine 16(18):1553–1565. https://doi.org/10.2217/nnm-2021-0029

    Article  CAS  PubMed  Google Scholar 

  160. Dams-Kozlowska H, Majer A, Tomasiewicz P, Lozinska J, Kaplan DL, Mackiewicz A (2013) Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res Part A 101(2):456–464. https://doi.org/10.1002/jbm.a.34353

    Article  CAS  Google Scholar 

  161. Westermark P, Lundmark K, Westermark GT (2009) Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model. PLoS ONE 4(6):e6041. https://doi.org/10.1371/journal.pone.0006041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Katarzyna Lundmark, Gunilla T Westermark, Arne Olsén, and Per Westermark, Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism. Proceedings of the National Academy of Sciences, 2005. 102(17): p. 6098–6102,www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.0501814102.

  163. Coelho F, Cavicchioli M, Specian SS, Cilli EM, Ribeiro SJL, Scarel-Caminaga RM, SidorenkoOliveira Capot T (2020) Silk fibroin/hydroxyapatite composite membranes: production, characterization and toxicity evaluation. Toxicol Vitro 62:104670. https://doi.org/10.1016/j.tiv.2019.104670

    Article  CAS  Google Scholar 

  164. Naserzadeh P, Mortazavi SA, Ashtari K, Salimi A, Farokhi M, Pourahmad J (2018) Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. J Biochem Mol Toxicol 32(6):e22056. https://doi.org/10.1002/jbt.22056

    Article  CAS  PubMed  Google Scholar 

  165. Naserzadeh P, Mortazavi SA, Ashtari K, Seydi E, Pourahmad J (2018) Evaluation of the toxicity effects of silk fibroin on isolated fibroblast and huvec cells. Iran J Pharm Res 17(Suppl2):134

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369. https://doi.org/10.1016/j.tibtech.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  167. Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L et al (1999) Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res 46(4):531–538. https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4

    Article  CAS  PubMed  Google Scholar 

  168. Yan LP, Silva-Correia J, Ribeiro VP, Miranda-Gonçalves V, Correia C, da Silva Morais A, Sousa RA, Reis RM, Oliveira AL et al (2016) Tumor growth suppression induced by biomimetic silk fibroin hydrogels. Sci Rep 6(1):31037. https://doi.org/10.1038/srep31037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yan H-B, Zhang Y-Q, Ma Y-L, Zhou L-X (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11(8):1937–1946. https://doi.org/10.1007/s11051-008-9549-y

    Article  CAS  Google Scholar 

  170. Wongpinyochit T, Johnston BF, Philipp Seib F (2016) Manufacture and drug delivery applications of silk nanoparticles. J Visual Exp 116:e54669. https://doi.org/10.3791/54669

    Article  CAS  Google Scholar 

  171. Gobin AS, Rhea R, Newman RA, Mathur AB (2006) Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomed 1(1):81. https://doi.org/10.2147/nano.2006.1.1.81

    Article  CAS  Google Scholar 

  172. Puyuan Wu, Liu Q, Li R, Jing Wang Xu, Zhen GY, Wang H, Cui F, Fenglei Wu et al (2013) Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 5(23):12638–12645. https://doi.org/10.1021/am403992b

    Article  CAS  Google Scholar 

  173. Andiappan M, Sundaramoorthy S, Panda N, Meiyazhaban G, Winfred SB, Venkataraman G, Krishna P (2013) Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Progress Biomater 2(1):1–11. https://doi.org/10.1186/2194-0517-2-6

    Article  Google Scholar 

  174. Lv XiangGuo, Li Z, Chen ShiYan, Xie MinKai, Huang JianWen, Peng XuFeng, Yang RanXing, Wang HuaPing, YueMin Xu et al (2016) Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials 84:99–110. https://doi.org/10.1016/j.biomaterials.2016.01.032

    Article  CAS  PubMed  Google Scholar 

  175. Yun Gu, Zhu J, Xue C, Li Z, Ding F, Yang Y, Xiaosong Gu (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35(7):2253–2263. https://doi.org/10.1016/j.biomaterials.2013.11.087

    Article  CAS  Google Scholar 

  176. Zhang K, Jinglei W, Huang C, Mo X (2013) Fabrication of silk fibroin/P (LLA-CL) aligned nanofibrous scaffolds for nerve tissue engineering. Macromol Mater Eng 298(5):565–574

    Article  CAS  Google Scholar 

  177. Kuihua Zhang Wu, Jinglei CH, Mo X (2013) Fabrication of silk fibroin/P (LLA-CL) aligned nanofibrous scaffolds for nerve tissue engineering. Macromol Mater Eng 298(5):565–574. https://doi.org/10.1002/mame.201200038

    Article  CAS  Google Scholar 

  178. Nune M, Manchineella S, Govindaraju T, Narayan KS (2019) Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Mater Sci Eng: C 94:17–25

    Article  CAS  Google Scholar 

  179. Lv Q, Feng Q, Kun Hu, Cui F (2005) Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture. Polymer 46(26):12662–12669. https://doi.org/10.1016/j.polymer.2005.10.137

    Article  CAS  Google Scholar 

  180. Lv Q, Kun Hu, Feng Q, Cui F, Cao C (2007) Preparation and characterization of PLA/fibroin composite and culture of HepG2 (human hepatocellular liver carcinoma cell line) cells. Compos Sci Technol 67(14):3023–3030. https://doi.org/10.1016/j.compscitech.2007.05.003

    Article  CAS  Google Scholar 

  181. Chang G, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Kandel R (2010) Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J Biomed Mater Res Part A 92(1):43–51. https://doi.org/10.1002/jbm.a.32326

    Article  CAS  Google Scholar 

  182. Chung T-W, Chen W-P, Tai P-W, Lo H-Y, Ting-Ya Wu (2020) Roles of silk fibroin on characteristics of hyaluronic acid/silk fibroin hydrogels for tissue engineering of nucleus pulposus. Materials 13(12):2750. https://doi.org/10.3390/ma13122750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ribeiro M, De Moraes MA, Beppu MM, Garcia MP, Fernandes MH, Monteiro FJ, Ferraz MP (2015) Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. Eur Polym J 67:66–77. https://doi.org/10.1016/j.eurpolymj.2015.03.056

    Article  CAS  Google Scholar 

  184. Jin Y, Kundu B, Cai Y, Kundu SC, Yao J (2015) Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering. Colloids Surfaces B: Biointerfaces 134:339–345. https://doi.org/10.1016/j.colsurfb.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  185. Zhou Y, Liang K, Zhao S, Zhang C, Li J, Yang H, Liu X, Yin X, Chen D et al (2018) Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int J Biol Macromol 108:383–390. https://doi.org/10.1016/j.ijbiomac.2017.12.032

    Article  CAS  PubMed  Google Scholar 

  186. Wang Lu, Rongjian Lu, Hou J, Nan X, Xia Y, Guo Y, Meng K, Changzhen Xu, Wang X et al (2020) Application of injectable silk fibroin/graphene oxide hydrogel combined with bone marrow mesenchymal stem cells in bone tissue engineering. Colloids Surfaces A: Physicochem Eng Aspects 604:125318. https://doi.org/10.1016/j.colsurfa.2020.125318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the faculty of advanced technologies in medicine, Iran University of Medical Sciences colleagues, for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elham Afjeh-Dana or Behnaz Ashtari.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afjeh-Dana, E., Javadmoosavi, S.A., Rahvar, M. et al. Nanostructures and biomaterials based on silk polymer for medical diagnostic and therapeutic applications. Polym. Bull. 81, 4737–4769 (2024). https://doi.org/10.1007/s00289-023-04949-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04949-5

Keywords

Navigation