Skip to main content

Advertisement

Log in

Solid electrolyte membranes with Al2O3 nanofiller for fully solid-state Li-ion cells

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Fully solid-state lithium-ion cells have the benefits of excellent safety, remarkable electrochemical stability, and extended cycle life. They are categorized as prospective candidates for new-generation energy storage devices capable of safe and stable operation for relatively long periods. In whole solid-state Li-ion cells, polymer-based solid electrolyte membranes (SEMs) are expected to serve as both the solid electrolyte and the partition material. Remarkably high ionic conductivity and efficient ion diffusion can be achieved in SEMs by incorporating inorganic filler materials. In the present work, solid electrolyte membranes are developed by a simple solution cast method. The addition of Al2O3 nanoparticles is found to enhance the ionic conductivity of SE membranes to 1.25 × 10−4 S cm−1 for optimum concentrations of lithium salt and filler material. These SE membranes show relatively high electrochemical stability window up to 4.75 V. Transparent and freestanding SE membranes developed using PEO-PVDF-LiNO3-Al2O3 have excellent thermal stability, ideal ion transport number, and good electrochemical properties, suitable for applications in solid-state lithium-ion cells. Assembled LiFePO4-MWCNT//SEM//Li metal half-cells are found to deliver an initial discharge capacity of 128 mAh g−1 at 0.1 C and an initial Coulombic efficiency of 98%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Tarascon JM, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. Mater Sustain Energy Collect Peer-Rev Res Rev Artic Nat Publ Gr 414:171–179. https://doi.org/10.1142/9789814317665_0024

    Article  Google Scholar 

  3. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources 161(1):573–579. https://doi.org/10.1016/j.jpowsour.2006.03.058

    Article  CAS  Google Scholar 

  4. Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li-ion batteries. J Power Sour 89(2):206–218. https://doi.org/10.1016/S0378-7753(00)00431-6

    Article  CAS  Google Scholar 

  5. Ahmad S (2009) Polymer electrolytes : characteristics and peculiarities. Ionics 15:309–321. https://doi.org/10.1007/s11581-008-0309-x

    Article  CAS  Google Scholar 

  6. Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. Solid State Ionics 180(9–10):677–680. https://doi.org/10.1016/j.ssi.2009.03.003

    Article  CAS  Google Scholar 

  7. Kumar KN, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP):Li+ blended polymer electrolyte films with the addition of Ag nanofiller. Ionics (Kiel) 22(6):815–825. https://doi.org/10.1007/s11581-015-1599-4

    Article  CAS  Google Scholar 

  8. Pradeepa P, Edwin Raj S, Sowmya G, Kalaiselvimary J, Ramesh Prabhu M (2016) Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends. Mater Sci Eng B Solid-State Mater Adv Technol 205:6–17. https://doi.org/10.1016/j.mseb.2015.11.009

    Article  CAS  Google Scholar 

  9. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103(48):10632–10638. https://doi.org/10.1021/jp992307u

    Article  CAS  Google Scholar 

  10. Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7(1):75–79. https://doi.org/10.1016/0167-2738(82)90072-8

    Article  CAS  Google Scholar 

  11. Links DA (2011) Electrolytes for solid-state lithium rechargeable batteries : recent advances and perspectives. Chem Soc Rev. https://doi.org/10.1039/c0cs00081g

    Article  Google Scholar 

  12. Zhang XW, Wang C, Appleby AJ, Little FE (2002) Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes. J Power Sources 112(1):209–215. https://doi.org/10.1016/S0378-7753(02)00365-8

    Article  CAS  Google Scholar 

  13. Appetecchi G, Croce F, Hassoun J, Scrosati B, Salomon M, Cassel F (2003) Hot-pressed, dry, composite, PEO-based electrolyte membranes: I. Ionic conductivity characterization. J Power Sources 114:105–112. https://doi.org/10.1016/S0378-7753(02)00543-8

    Article  CAS  Google Scholar 

  14. Liang B, Liang B, Tang S, Jiang Q, Chuangsheng Chen Xu, Chen SL, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341. https://doi.org/10.1016/j.electacta.2015.04.039

    Article  CAS  Google Scholar 

  15. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chinese Chem Lett 25(11):1428–1434. https://doi.org/10.1016/j.cclet.2014.06.005

    Article  CAS  Google Scholar 

  16. El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric ␤ -polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677. https://doi.org/10.1016/j.apsusc.2012.04.118

    Article  CAS  Google Scholar 

  17. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104(3–4):267–276. https://doi.org/10.1016/s0167-2738(97)00422-0

    Article  CAS  Google Scholar 

  18. Shan Y, Li L, Yang X (2021) Solid-state polymer electrolyte solves the transfer of lithium ions between the solid-solid interface of the electrode and the electrolyte in Lithium-Sulfur and Lithium-ion batteries. ACS Appl Energy Mater 4(5):5101–5112. https://doi.org/10.1021/acsaem.1c00658

    Article  CAS  Google Scholar 

  19. Judeinstein BP, Roussel F (2005) Ionic conductivity of lithium salt/Oligo ethylene oxide based liquid-crystal mixtures : the effect of molecular architecture on the conduction process. Adv Mater 6:723–727

    Article  Google Scholar 

  20. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi SJEA (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222. https://doi.org/10.1016/j.electacta.2017.03.118

    Article  CAS  Google Scholar 

  21. Hou W, Zhai Y, Chen Z, Liu C, Ouyang C, Hu N, Song S (2023) Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries. Appl Phys Lett 10(1063/5):0134474

    Google Scholar 

  22. Yang G, Hou W, Zhai Y, Chen Z, Liu C, Ouyang C, Song S (2023) Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat. https://doi.org/10.1002/eom2.12325

    Article  Google Scholar 

  23. Li C, Zhou S, Dai L, Zhou X, Zhang B, Chen L, Zeng T, Liu Y, Tang Y, Jiang J, Huang J (2021) Porous polyamine/PEO composite solid electrolyte for high-performance solid-state lithium metal batteries. J Mater Chem A 9(43):24661–24669. https://doi.org/10.1039/d1ta04599g

    Article  CAS  Google Scholar 

  24. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10039. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  25. Tominaga Y, Endo M (2013) Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina, and titania. Electrochim Acta 113:361–365. https://doi.org/10.1016/j.electacta.2013.09.117

    Article  CAS  Google Scholar 

  26. Mohamed Ali T, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840. https://doi.org/10.1007/s11581-014-1240-y

    Article  CAS  Google Scholar 

  27. Ravi M, Kumar KK, Mohan VM, Rao VN (2014) Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polym Test 33:152–160. https://doi.org/10.1016/j.polymertesting.2013.12.002

    Article  CAS  Google Scholar 

  28. Kou Y, Zhou W, Li X, Wang Z, Li Y, Cai H, Dang ZM (2020) Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@ PVP hybrids. Polym Plast Technol Mater 59(6):592–605. https://doi.org/10.1080/25740881.2019.1669655

    Article  CAS  Google Scholar 

  29. Jinisha B, Anilkumar KM, Manoj M, Abhilash A, Pradeep VS, Jayalekshmi S (2018) Poly (ethylene oxide) (PEO)-based, sodium ion-conducting, solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics (Kiel) 24(6):1675–1683. https://doi.org/10.1007/s11581-017-2332-2

    Article  CAS  Google Scholar 

  30. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nat Lett 394:456–458. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  31. Gouda OE, Mahmoud SF, El-Gendy AA, Haiba AS (2014) Improving the dielectric properties of high density polyethylene by incorporating clay-nano filler. TELKOMNIKA Indonesian J Electr Eng 12(12):7987–7995. https://doi.org/10.12928/TELKOMNIKA.v12i4.115

    Article  Google Scholar 

  32. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta 47(20):3257–3268. https://doi.org/10.1016/S0013-4686(02)00243-8

    Article  CAS  Google Scholar 

  33. Bruce PG, Evans J, Vincent CA (1988) Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 28:918–922. https://doi.org/10.1016/0167-2738(88)90304-9

    Article  Google Scholar 

  34. Christodoulou K, Andrikopoulos KS, Fotiadou S, Bollas S, Karageorgaki C, Dimitrios C, Voyiatzis GA, Anastasiadis SH (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44(24):9710–9722. https://doi.org/10.1021/ma201711r

    Article  CAS  Google Scholar 

  35. Chauhan AK, Mishra K, Kumar D, Singh A (2021) Enhancing Sodium ion transport in a PEO-based solid polymer electrolyte system with NaAlO2 active fillers. J Electron Mater 50(9):5122–5133. https://doi.org/10.1007/s11664-021-09051-y

    Article  CAS  Google Scholar 

  36. Yi M, Wu X (2020) Dynamics of charged particles around a magnetically deformed Schwarzschild black hole. Phys Scr 95(8):085008. https://doi.org/10.1088/1402-4896/aba4c2

    Article  CAS  Google Scholar 

  37. Li XH, Zhao LJ, Dong JL, Xiao HS, Zhang YH (2008) Confocal raman studies of Mg(NO3)2 aerosol particles deposited on a quartz substrate: supersaturated structures and complicated phase transitions. J Phys Chem B 112(16):5032–5038. https://doi.org/10.1021/jp709938x

    Article  CAS  PubMed  Google Scholar 

  38. Elashmawi IS, Gaabour LH (2015) Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys 5:105–110. https://doi.org/10.1016/j.rinp.2015.04.005

    Article  Google Scholar 

  39. Kumar KN, Reddy MV, Vijayalakshmi L, Ratnakaram YC (2015) Synthesis and analysis of Fe3+, Co2+, and Ni2+: PEO+ PVP blended polymer composite films for multifunctional polymer applications. Bull Mater Sci 38(4):1015–1023. https://doi.org/10.1007/s12034-015-0925-9

    Article  CAS  Google Scholar 

  40. Puthirath AB, John B, Gouri C, Jayalekshmi S (2015) Lithium-doped PEO-a prospective solid electrolyte with high ionic conductivity, developed using n-Butyllithium in hexane as dopant. Ionics (Kiel) 21(8):2185–2191. https://doi.org/10.1007/s11581-015-1406-2

    Article  CAS  Google Scholar 

  41. Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Mater Sci Eng: B 184:26–33. https://doi.org/10.1016/j.mseb.2014.01.009

    Article  CAS  Google Scholar 

  42. Rathika R, Padmaraj O, Suthanthiraraj SA (2018) Electrical conductivity and dielectric relaxation behavior of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics (Kiel) 24(1):243–255. https://doi.org/10.1007/s11581-017-2175-x

    Article  CAS  Google Scholar 

  43. Ganesan S, Muthuraaman B, Mathew V, Vadivel MK, Maruthamuthu P, Ashokkumar M, Suthanthiraraj SA (2011) Influence of 2, 6 (N-pyrazolyl) isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly (vinylidene fluoride) blended with poly (ethylene oxide) polymer electrolyte. Electrochim Acta 56(24):8811–8817. https://doi.org/10.1016/j.electacta.2011.07.081

    Article  CAS  Google Scholar 

  44. Sulaiman M, Rahman AA, Mohamed NS (2017) Effect of water-based sol-gel method on structural, thermal and conductivity properties of LiNO3 – Al2O3 composite solid electrolytes. Arab J Chem 10(8):1147–1152. https://doi.org/10.1016/j.arabjc.2015.04.031

    Article  CAS  Google Scholar 

  45. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941. https://doi.org/10.1016/j.electacta.2017.07.051

    Article  CAS  Google Scholar 

  46. Braun PV, Cho J, Pikul JH, King WP, Zhang H (2012) High power rechargeable batteries. Curr Opin Solid State Mater Sci 16(4):186–198. https://doi.org/10.1016/j.cossms.2012.05.002

    Article  CAS  Google Scholar 

  47. Liu J, Khanam Z, Muchakayala R, Song S (2020) Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system. J Mater Sci Mater Electron 31(8):6160–6173. https://doi.org/10.1007/s10854-020-03169-1

    Article  CAS  Google Scholar 

  48. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO) – Poly(vinyl pyrrolidone) (PVP) blend polymer-based solid electrolyte membranes for developing solid-state magnesium ion cells. Eur Polym J 89:249–262. https://doi.org/10.1016/j.eurpolymj.2017.02.004

    Article  CAS  Google Scholar 

  49. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98(3–4):167–174. https://doi.org/10.1016/s0167-2738(97)00117-3

    Article  CAS  Google Scholar 

  50. Aravindan V, Vickraman P (2007) A novel gel electrolyte with lithium difluoro(oxalate)borate salt and Sb2O3 nanoparticles for lithium-ion batteries. Solid State Sci 9(11):1069–1073. https://doi.org/10.1016/j.solidstatesciences.2007.07.011

    Article  CAS  Google Scholar 

  51. Singh R, Kumar J, Singh RK, Rastogi RC, Kumar V (2007) Low-frequency ac conduction and dielectric relaxation in pristine poly(3-octyl thiophene) films. New J Phys 9(3):227–232. https://doi.org/10.1088/1367-2630/9/2/040

    Article  CAS  Google Scholar 

  52. Yakuphanoglu F, Aydogdu Y, Schatzschneider U, Rentschler E (2003) DC and AC conductivity and dielectric properties of the metal-radical compound: Aqua [bis(2-dimethylaminomethyl-4-NIT-phenolato)]copper(II). Solid State Commun 128(2–3):63–67. https://doi.org/10.1016/S0038-1098(03)00651-3

    Article  CAS  Google Scholar 

  53. Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22(6):803–814. https://doi.org/10.1007/s11581-015-1600-2

    Article  CAS  Google Scholar 

  54. Chen D, Cheng J, Wen Y, Cao G, Yang Y, Liu H (2012) Impedance study of electrochemical stability limits for electrolytes. Int J Electrochem Sci 7:12383–12390. https://doi.org/10.1016/S1452-3981(23)16552-7

    Article  CAS  Google Scholar 

  55. Kumar KK, Pavani Y, Ravi M, Bhavani S, Sharma AK, Rao VVRN (2011) Effect of complexation of NaCl salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. AIP Conf Proc 1391:641–644. https://doi.org/10.1063/1.3643635

    Article  CAS  Google Scholar 

  56. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium-ion electrolytes via four different methods, a comparative study. Electrochim Acta 56(11):3926–3933. https://doi.org/10.1016/j.electacta.2011.02.025

    Article  CAS  Google Scholar 

  57. Zhang H, Liu C, Zheng L, Fei Xu, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z (2014) Lithium bis(fluoro sulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta 133:529–538. https://doi.org/10.1016/j.electacta.2014.04.099

    Article  CAS  Google Scholar 

  58. Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sour 119–121:409–414. https://doi.org/10.1016/S0378-7753(03)00262-3

    Article  CAS  Google Scholar 

  59. Kumar MS, Rao MC (2019) Effect of Al2O3 on structural and dielectric properties of PVP-CH3COONa based solid polymer electrolyte films for energy storage devices. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02727

    Article  PubMed Central  PubMed  Google Scholar 

  60. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics 178(13–14):885–888. https://doi.org/10.1016/j.ssi.2007.04.008

    Article  CAS  Google Scholar 

  61. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370. https://doi.org/10.1016/j.electacta.2014.07.120

    Article  CAS  Google Scholar 

  62. St-Onge V, Cui M, Rochon S, Daigle JC, Claverie JP (2021) Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization. Commun Mater 2(1):1–11. https://doi.org/10.1038/s43246-021-00187-2

    Article  CAS  Google Scholar 

  63. Rosenwinkel MP, Schönhoff M (2019) Lithium transference numbers in PEO/LiTFSA electrolytes determined by electrophoretic NMR. J Electrochem Soc 166(10):A1977–A1983. https://doi.org/10.1149/2.0831910jes

    Article  CAS  Google Scholar 

  64. Shao Y, Gudla H, Brandell D, Zhang C (2022) Transference number in polymer electrolytes: mind the reference-frame gap. J Am Chem Soc 144(17):7583–7587. https://doi.org/10.1021/jacs.2c02389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ji G, Ou X, Zhao R, Zhang J, Zou J, Li P, He D (2021) Efficient utilization of scrapped LiFePO4 battery for novel synthesis of Fe2P2O7/C as candidate anode materials. Resour Conserv Recycl 174:105802. https://doi.org/10.1016/j.resconrec.2021.105802

    Article  CAS  Google Scholar 

  66. Angulakshmi N, Kar GP, Bose S, Gowd EB, Thomas S, Stephan AM (2017) A high-performance BaTiO3-grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Mater Chem Front 1(2):269–277. https://doi.org/10.1039/c6qm00098c

    Article  CAS  Google Scholar 

  67. Appetecchi GB, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M (2003) Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II All solid-state Li/LiFePO4 polymer batteries. J Power Sour 124(1):246–253. https://doi.org/10.1016/S0378-7753(03)00611-6

    Article  CAS  Google Scholar 

  68. Waldmann T, Iturrondobeitia A, Kasper M, Ghanbari N, Aguesse F, Bekaert E, Wohlfahrt-Mehrens M (2016) Post-mortem analysis of aged lithium-ion batteries: disassembly methodology and physico-chemical analysis techniques. J Electrochem Soc 163(10):A2149. https://doi.org/10.1149/2.1211609jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Merin K. Wilson, thanks Rashtriya Uchchatar Shiksha Abhiyan (RUSA), Government of India, for financial support through senior research fellowship. The authors acknowledge the funding extended by the Department of Science and Technology, Government of India, in the form of the Funding for Improvement of Science and Technology (DST-FIST) Scheme, for acquiring FE- SEM facility. The authors also acknowledge STIC, CUSAT, Kerala, India, for TEM, DSC, and TGA measurements. S. Jayalekshmi is thankful for the financial assistance from Kerala State Council for Science, Technology, and Environment (KSCSTE) via Emeritus Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayalekshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, M.K., Augustin, C., Abhilash, A. et al. Solid electrolyte membranes with Al2O3 nanofiller for fully solid-state Li-ion cells. Polym. Bull. 81, 6003–6024 (2024). https://doi.org/10.1007/s00289-023-04945-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04945-9

Keywords

Navigation