Skip to main content

Advertisement

Log in

Evaluation of antibacterial properties of polyvinyl alcohol/chitosan/potassium permanganate electrospun nanofibers

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study aimed to investigate the antibacterial properties of polyvinyl alcohol/chitosan/potassium permanganate composite nanofibers in different concentrations against gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. For this purpose, the nanofibers above were first made using the electrospun method. Then, the antibacterial effects of the nanofibers were evaluated by antibiogram test. Scanning electron microscopy (SEM) results showed that the diameter of polyvinyl alcohol/chitosan nanofibers ranges from 186.52 to 96.55 nm and has a length of several micrometers. The images of SEM analysis also showed that nanofibers have a smooth surface without any beads. Moreover, the results of X-map analysis have shown that the addition of potassium permanganate slightly decreases the uniform distribution of elements along the length of the nanofibers. Energy-disperse X-ray (EDX) spectroscopy revealed that carbon is the most abundant element in the nanofibers. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed the occurrence of new bonds of elements after the addition of potassium permanganate. The antibacterial test exhibited the most antibacterial properties of nanofibers containing 1 ml of potassium permanganate with a concentration of 1% against both E. coli and P. aeruginosa. It is worth mentioning that the antibacterial property of nanofibers against Escherichia coli was higher than P. aeruginosa. So, using the above-mentioned nanofibers could be a promising antibacterial strategy against infectious bacteria in wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

I confirm that I have included a data availability statement in my main manuscript file.

References

  1. O’Neill, J (2015) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist

  2. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  CAS  PubMed  Google Scholar 

  3. Zhang G, Shen X, Chen S, Liang L, Luo Y, Yu J, Lu J (2019) DSM: A deep supervised multi-scale network learning for skin cancer segmentation. IEEE Access 7:140936–140945

    Article  Google Scholar 

  4. Yoon J, Jeong B, Lee WH, Kim J (2018) Tracing the evolving trends in electronic skin (e-skin) technology using growth curve and technology position-based patent bibliometrics. IEEE Access 6:26530–26542

    Article  Google Scholar 

  5. Singh VK, Abdel-Nasser M, Rashwan HA, Akram F, Pandey N, Lalande A et al (2019) FCA-net: adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access 7:130552–130565

    Article  Google Scholar 

  6. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  PubMed  Google Scholar 

  7. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  8. Harding KG, Morris HL, Patel GK (2002) Clinical review Healing chronic wounds. Br Med J 324:160–163

    Article  CAS  Google Scholar 

  9. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  CAS  PubMed  Google Scholar 

  10. Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27(11):2450–2467

    Article  CAS  PubMed  Google Scholar 

  11. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    Article  CAS  PubMed  Google Scholar 

  12. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):09955–09967

    Article  CAS  Google Scholar 

  13. Smit E, Bűttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423

    Article  CAS  Google Scholar 

  14. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  15. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 5(21):2349–2370

    Article  CAS  PubMed  Google Scholar 

  17. Gaharwar AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K et al (2014) Nanoclay-enriched poly (ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 20(15–16):2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41(13):4708–4735

    Article  CAS  PubMed  Google Scholar 

  19. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  CAS  Google Scholar 

  20. Hosseini Ravandi SA, Gandhimathi C, Valizadeh M, Ramakrishna S (2013) Application of electrospun natural biopolymer nanofibers. Curr Nanosci 9(4):423–433

    Article  Google Scholar 

  21. Bernard M, Jubeli E, Pungente MD, Yagoubi N (2018) Biocompatibility of polymer-based biomaterials and medical devices–regulations, in vitro screening and risk-management. Biomater Sci 6(8):2025–2053

    Article  CAS  PubMed  Google Scholar 

  22. Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44(7):1820–1835

    Article  CAS  PubMed  Google Scholar 

  23. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  24. Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    Article  CAS  PubMed  Google Scholar 

  25. Chattopadhyay S, Raines RT (2014) Collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 9(7):7093–7114

    Article  CAS  PubMed  Google Scholar 

  27. Hu MS, Maan ZN, Wu JC, Rennert RC, Hong WX, Lai TS et al (2014) Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42(7):1494–1507

    Article  PubMed  PubMed Central  Google Scholar 

  28. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554

    Article  CAS  PubMed  Google Scholar 

  29. Parani M, Lokhande G, Singh A, Gaharwar AK (2016) Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces 8(16):10049–10069

    Article  CAS  PubMed  Google Scholar 

  30. Pirsa S, Mohammadi B (2021) Conducting/biodegradable chitosan-polyaniline film; Antioxidant, color, solubility and water vapor permeability properties. Main Group Chem 20(2):133–147

    Article  CAS  Google Scholar 

  31. Luo Y, Wang Q (2013) Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process Beverages 1(1):1–13

    Google Scholar 

  32. Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633

    Article  CAS  PubMed  Google Scholar 

  33. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465

    Article  CAS  Google Scholar 

  34. Wang T, Zhu XK, Xue XT, Wu DY (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohyd Polym 88(1):75–83

    Article  CAS  Google Scholar 

  35. Takeda M, Kondo K, Yamada M, Koizumi JI, Mashima T, Matsugami A, Katahira M (2010) Solubilization and structural determination of a glycoconjugate which is assembled into the sheath of Leptothrix cholodnii. Int J Biol Macromol 46(2):206–211

    Article  CAS  PubMed  Google Scholar 

  36. Baxter RM, Dai T, Kimball J, Wang E, Hamblin MR, Wiesmann WP et al (2013) Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J Biomed Mater Res Part A 101(2):340–348

    Article  Google Scholar 

  37. Kossovich LY, Salkovskiy Y, Kirillova IV (2010) Electrospun chitosan nanofiber materials as burn dressing. In: 6th world congress of biomechanics (WCB 2010). August 1–6, 2010 Singapore. Springer, Berlin, Heidelberg, pp 1212–1214

  38. Goy RC, Morais ST, Assis OB (2016) Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras 26:122–127

    CAS  Google Scholar 

  39. Xing Y, Xu Q, Li X, Chen C, Ma L, Li S et al (2016) Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci. https://doi.org/10.1155/2016/4851730

  40. Divya K, Vijayan S, George TK, Jisha MS (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18(2):221–230

    Article  CAS  Google Scholar 

  41. Mirzaei E, Faridi-Majidi R, Shokrgozar MA, Asghari Paskiabi F (2014) Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J 1(3):137–146

    Google Scholar 

  42. Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res Part B: Appl Biomater: Offic J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 92(2):568–576

    Article  Google Scholar 

  43. Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci, Part B: Polym Phys 44(17):2468–2474

    Article  CAS  Google Scholar 

  44. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly (vinyl alcohol) membranes. Colloid Polym Sci 285(8):855–863

    Article  CAS  Google Scholar 

  45. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly (vinyl alcohol) fibers via electrospinning. Fibers Polym 3(2):73–79

    Article  CAS  Google Scholar 

  46. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40

    Article  CAS  PubMed  Google Scholar 

  47. Sánchez-Saldaña L, Sáenz-Anduaga E (2015) Antisépticosy desinfectantes

  48. Majtan J (2011) Methylglyoxal—a potential risk factor of Manuka honey in healing of diabetic ulcers. Evid-Based Complement Altern Med 295494.

  49. Anderson I (2003) Should potassium permanganate be used in wound care? Nurs Times 99(31):61–61

    PubMed  Google Scholar 

  50. Chirapapaisan C, Prabhasawat P, Srivannaboon S, Roongpoovapatr V, Chitsuthipakorn P (2018) Ocular injury due to potassium permanganate granules. Case Rep Ophthalmol 9(1):138–143

    Article  Google Scholar 

  51. Scott KJ, McGlasson WB, Roberts EA (1970) Potassium permanganate as an ethylene absorbent in polyethylene bags to delay ripening of bananas during storage. Aust J Exp Agric 10(43):237–240

    Article  CAS  Google Scholar 

  52. Goldstein J (ed) (2012) Practical scanning electron microscopy: electron and ion microprobe analysis. Springer

  53. Pirsa S, Asadi S (2021) Innovative smart and biodegradable packaging for margarine based on a nano composite polylactic acid/lycopene film. Food Add Contam: Part A 38(5):856–869

    Article  CAS  Google Scholar 

  54. Meydanju N, Pirsa S, Farzi J (2022) Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: Investigation of physicochemical and antibacterial properties. Polym Test 106:107445

    Article  CAS  Google Scholar 

  55. Yorghanlu RA, Hemmati H, Pirsa S, Makhani A (2022) Production of biodegradable sodium caseinate film containing titanium oxide nanoparticles and grape seed essence and investigation of physicochemical properties. Polym Bull 79(10):8217–8240

    Article  CAS  Google Scholar 

  56. Shekh MI, Amirian J, Stadler FJ, Du B, Zhu Y (2020) Oxidized chitosan modified electrospun scaffolds for controllable release of acyclovir. Int J Biol Macromol 151:787–796

    Article  CAS  PubMed  Google Scholar 

  57. Shekh MI, Patel KP, Patel RM (2018) Electrospun ZnO nanoparticles doped core–sheath nanofibers: characterization and antimicrobial properties. J Polym Environ 26:4376–4387

    Article  CAS  Google Scholar 

  58. Zhou J, Yao D, Qian Z, Hou S, Li L, Jenkins ATA, Fan Y (2018) Bacteria-responsive intelligent wound dressing: Simultaneous In situ detection and inhibition of bacterial infection for accelerated wound healing. Biomaterials 161:11–23

    Article  CAS  PubMed  Google Scholar 

  59. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384

    Article  Google Scholar 

  60. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NB (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42(19):8163–8170

    Article  CAS  Google Scholar 

  61. Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: Internal structure and intrinsic orientation. J Polym Sci, Part A: Polym Chem 41(4):545–553

    Article  CAS  Google Scholar 

  62. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    Article  CAS  Google Scholar 

  63. Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P (2015) Silver‐nanoparticle‐incorporated composite nanofibers for potential wound‐dressing applications. J Appl Polym Sci 132(35):1–12

  64. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115

    Article  CAS  PubMed  Google Scholar 

  65. Chen CS, Liau WY, Tsai GJ (1998) Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J Food Prot 61(9):1124–1128

    Article  CAS  PubMed  Google Scholar 

  66. Fang SW, Li CF, Shih DY (1994) Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J Food Prot 57(2):136–140

    Article  CAS  PubMed  Google Scholar 

  67. Jung BO, Kim CH, Choi KS, Lee YM, Kim JJ (1999) Preparation of amphiphilic chitosan and their antimicrobial activities. J Appl Polym Sci 72(13):1713–1719

    Article  CAS  Google Scholar 

  68. Unnithan AR, Barakat NA, Pichiah PT, Gnanasekaran G, Nirmala R, Cha YS et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90(4):1786–1793

    Article  CAS  PubMed  Google Scholar 

  69. Zheng LY, Zhu JF, Sun KS (2000) Antimicrobial activity of chitosan. Mater Sci Eng-Hangzhou 18(2):22–24

    Google Scholar 

  70. Zhang S, Li J, Li J, Du N, Li D, Li F, Man J (2020) Application status and technical analysis of chitosan-based medical dressings: a review. RSC Adv 10(56):34308–34322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burkatovskaya M, Tegos GP, Swietlik E, Demidova TN, Castano AP, Hamblin MR (2006) Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27(22):4157–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vicentini DS, Smania A Jr, Laranjeira MC (2010) Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng, C 30(4):503–508

    Article  CAS  Google Scholar 

  73. Tan L, Hu J, Huang H, Han J, Hu H (2015) Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int J Biol Macromol 79:469–476

    Article  CAS  PubMed  Google Scholar 

  74. Hu N, Wu XH, Liu R, Yang SH, Huang W, Jiang DM et al (2015) Novel application of vacuum sealing drainage with continuous irrigation of potassium permanganate for managing infective wounds of gas gangrene. J Huazhong Univer Sci Technol [Med Sci] 35(4):563–568

    Article  CAS  Google Scholar 

  75. Rai V (2020) What is the evidence for the use of potassium permanganate for wound care? Drug Ther Bull 58(5):71–74

    Article  PubMed  Google Scholar 

  76. Kegere J, Ouf A, Siam R, Mamdouh W (2019) Fabrication of poly (vinyl alcohol)/chitosan/bidens pilosa composite electrospun nanofibers with enhanced antibacterial activities. ACS Omega 4(5):8778–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen W, Wu Q, Zhang J, Wu H (2008) Antibacterial mechanism of chitosan. Wei Sheng Wu Xue Bao = Acta Microbiol Sini 48(2):164–168

    CAS  Google Scholar 

  78. Freeman F (1973) Postulated intermediates and activated complexes in the permanganate ion oxidation of organic compounds. Rev React Spec Chem React 1(2):179–226

    Google Scholar 

Download references

Funding

Funding information is not applicable/no funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Mrs. Asadi established the setup of the experimental work. Dr. Hamidinezhad and Dr. Karimian managed the experimental work and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Habib Hamidinezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Consent for publication

The Authors as a result of this consent to the publication of the work in any Journal of Materials Science publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, S., Hamidinezhad, H. & Karimian, M. Evaluation of antibacterial properties of polyvinyl alcohol/chitosan/potassium permanganate electrospun nanofibers. Polym. Bull. 81, 2627–2642 (2024). https://doi.org/10.1007/s00289-023-04863-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04863-w

Keywords

Navigation