Skip to main content

Advertisement

Log in

Tissue Engineering and Regenerative Repair in Wound Healing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adzick, N. S., and M. T. Longaker. Animal models for the study of fetal tissue repair. J. Surg. Res. 51:216–222, 1991.

    CAS  PubMed  Google Scholar 

  2. Adzick, N. S., and M. T. Longaker. Scarless fetal healing. Therapeutic implications. Ann. Surg. 215:3–7, 1992.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Ahn, S., et al. Designed three-dimensional collagen scaffolds for skin tissue regeneration. Tissue Eng. Part C 16:813–820, 2009.

    Google Scholar 

  4. Alaish, S. M., D. Yager, R. F. Diegelmann, and I. K. Cohen. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J. Pediatr. Surg. 29:1040–1043, 1994.

    CAS  PubMed  Google Scholar 

  5. Altman, A. M., et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29:1431–1442, 2008.

    CAS  PubMed  Google Scholar 

  6. Amadeu, T., et al. Vascularization pattern in hypertrophic scars and keloids: a stereological analysis. Pathol. Res. Pract. 199:469–473, 2003.

    PubMed  Google Scholar 

  7. Asuku, M. E., A. Ibrahim, and F. O. Ijekeye. Post-burn axillary contractures in pediatric patients: a retrospective survey of management and outcome. Burns 34:1190–1195, 2008.

    PubMed  Google Scholar 

  8. Atit, R., et al. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296:164–176, 2006.

    CAS  PubMed  Google Scholar 

  9. Badiavas, E. V., and V. Falanga. Treatment of chronic wounds with bone marrow-derived cells. Arch. Dermatol. 139:510–516, 2003.

    PubMed  Google Scholar 

  10. Badillo, A. T., L. Zhang, and K. W. Liechty. Stromal progenitor cells promote leukocyte migration through production of stromal-derived growth factor 1alpha: a potential mechanism for stromal progenitor cell-mediated enhancement of cellular recruitment to wounds. J. Pediatr. Surg. 43:1128–1133, 2008.

    PubMed  Google Scholar 

  11. Badylak, S. F., G. C. Lantz, A. Coffey, and L. A. Geddes. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47:74–80, 1989.

    CAS  PubMed  Google Scholar 

  12. Barrientos, S., O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic. Growth factors and cytokines in wound healing. Wound Repair Regen. 16:585–601, 2008.

    PubMed  Google Scholar 

  13. Beanes, S. R., et al. Down-regulation of decorin, a transforming growth factor-beta modulator, is associated with scarless fetal wound healing. J. Pediatr. Surg. 36:1666–1671, 2001.

    CAS  PubMed  Google Scholar 

  14. Bensaid, W., et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497–2502, 2003.

    CAS  PubMed  Google Scholar 

  15. Blanton, M. W., et al. Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast. Reconstr. Surg. 123:56S–64S, 2009.

    CAS  PubMed  Google Scholar 

  16. Bullard, K. M., M. T. Longaker, and H. P. Lorenz. Fetal wound healing: current biology. World J. Surg. 27:54–61, 2003.

    PubMed  Google Scholar 

  17. Burd, D. A., M. T. Longaker, N. S. Adzick, M. R. Harrison, and H. P. Ehrlich. Foetal wound healing in a large animal model: the deposition of collagen is confirmed. Br. J. Plast. Surg. 43:571–577, 1990.

    CAS  PubMed  Google Scholar 

  18. Butler, M. J., and M. V. Sefton. Poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold with pro-angiogenic potential in vivo. J. Biomed. Mater. Res. A82:265–273, 2007.

    Google Scholar 

  19. Caniggia, I., et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J. Clin. Investig. 105:577–587, 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9:641–650, 1991.

    CAS  PubMed  Google Scholar 

  21. Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213:341–347, 2007.

    CAS  PubMed  Google Scholar 

  22. Carre, A. L., et al. Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts. Plast. Reconstr. Surg. 125:74–88, 2010.

    CAS  PubMed  Google Scholar 

  23. Carter, R., K. Jain, V. Sykes, and D. Lanning. Differential expression of procollagen genes between mid- and late-gestational fetal fibroblasts. J. Surg. Res. 156:90–94, 2009.

    CAS  PubMed  Google Scholar 

  24. Cass, D. L., M. Meuli, and N. S. Adzick. Scar wars: implications of fetal wound healing for the pediatric burn patient. Pediatr. Surg. Int. 12:484–489, 1997.

    CAS  PubMed  Google Scholar 

  25. Cass, D. L., et al. Wound size and gestational age modulate scar formation in fetal wound repair. J. Pediatr. Surg. 32:411–415, 1997.

    CAS  PubMed  Google Scholar 

  26. Cass, D. L., et al. Epidermal integrin expression is upregulated rapidly in human fetal wound repair. J. Pediatr. Surg. 33:312–316, 1998.

    CAS  PubMed  Google Scholar 

  27. Chen, L., E. E. Tredget, C. Liu, and Y. Wu. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS ONE 4:e7119, 2009.

    PubMed Central  PubMed  Google Scholar 

  28. Chen, L., E. E. Tredget, P. Y. Wu, and Y. Wu. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:e1886, 2008.

    PubMed Central  PubMed  Google Scholar 

  29. Chen, F., J. J. Yoo, and A. Atala. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54:407–410, 1999.

    CAS  PubMed  Google Scholar 

  30. Chin, G. S., et al. Discoidin domain receptors and their ligand, collagen, are temporally regulated in fetal rat fibroblasts in vitro. Plast. Reconstr. Surg. 107:769–776, 2001.

    CAS  PubMed  Google Scholar 

  31. Christman, K. L., H. H. Fok, R. E. Sievers, Q. Fang, and R. J. Lee. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10:403–409, 2004.

    CAS  PubMed  Google Scholar 

  32. Colwell, A. S., T. M. Krummel, M. T. Longaker, and H. P. Lorenz. An in vivo mouse excisional wound model of scarless healing. Plast. Reconstr. Surg. 117:2292–2296, 2006.

    CAS  PubMed  Google Scholar 

  33. Colwell, A. S., T. M. Krummel, M. T. Longaker, and H. P. Lorenz. Wnt-4 expression is increased in fibroblasts after TGF-beta1 stimulation and during fetal and postnatal wound repair. Plast. Reconstr. Surg. 117:2297–2301, 2006.

    CAS  PubMed  Google Scholar 

  34. Dang, C. M., et al. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast. Reconstr. Surg. 111:2273–2285, 2003.

    PubMed  Google Scholar 

  35. Di Martino, A., M. Sittinger, and M. V. Risbud. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990, 2005.

    PubMed  Google Scholar 

  36. Doshi, J., and D. H. Reneker. Electrospinning process and applications of electrospun fibers. J. Electrostat. 35:151–160, 1995.

    CAS  Google Scholar 

  37. Driskell, R. R., et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:277–281, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Ebrahimian, T. G., et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler. Thromb. Vasc. Biol. 29:503–510, 2009.

    CAS  PubMed  Google Scholar 

  39. Egana, J. T., et al. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng. A15:1191–1200, 2009.

    Google Scholar 

  40. Egeland, B., S. More, S. R. Buchman, and P. S. Cederna. Management of difficult pediatric facial burns: reconstruction of burn-related lower eyelid ectropion and perioral contractures. J. Craniofac. Surg. 19:960–969, 2008.

    PubMed  Google Scholar 

  41. Estes, J. M., et al. Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56:173–181, 1994.

    CAS  PubMed  Google Scholar 

  42. Falanga, V., et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 13:1299–1312, 2007.

    CAS  PubMed  Google Scholar 

  43. Fitzpatrick, L. E., A. Lisovsky, and M. V. Sefton. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 33:5297–5307, 2012.

    CAS  PubMed  Google Scholar 

  44. Francis Suh, J. K., and H. W. T. Matthew. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598, 2000.

    CAS  Google Scholar 

  45. Fujisato, T., T. Sajiki, Q. Liu, and Y. Ikada. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials 17:155–162, 1996.

    CAS  PubMed  Google Scholar 

  46. Galiano, R. D., Jt. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12:485–492, 2004.

    PubMed  Google Scholar 

  47. Gallego, D., N. Ferrell, Y. Sun, and D. J. Hansford. Multilayer micromolding of degradable polymer tissue engineering scaffolds. Mater. Sci. Eng. C28:353–358, 2008.

    Google Scholar 

  48. Gaster, R. S., et al. Histologic analysis of fetal bovine derived acellular dermal matrix in tissue expander breast reconstruction. Ann. Plast. Surg. 2013. doi:10.1097/SAP.0b013e31827e55af.

  49. Glotzbach, J. P., et al. An information theoretic, microfluidic-based single cell analysis permits identification of subpopulations among putatively homogeneous stem cells. PLoS ONE 6:e21211, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Greiner, A., and J. H. Wendorff. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46:5670–5703, 2007.

    CAS  Google Scholar 

  51. Griffon, D. J., M. R. Sedighi, D. V. Schaeffer, J. A. Eurell, and A. L. Johnson. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater. 2:313–320, 2006.

    PubMed  Google Scholar 

  52. Gurtner, G. C., S. Werner, Y. Barrandon, and M. T. Longaker. Wound repair and regeneration. Nature 453:314–321, 2008.

    CAS  PubMed  Google Scholar 

  53. Hodde, J. P., D. M. Ernst, and M. C. Hiles. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J. Wound Care 14:23–25, 2005.

    CAS  PubMed  Google Scholar 

  54. Hollander, A. P., and E. Kon. Hyaluronan-based scaffolds (Hyalograft1 C) in the treatment of knee cartilage defects: preliminary clinical findings. Tissue Eng. Cartil. Bone 249:203, 2003.

    Google Scholar 

  55. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.

    CAS  PubMed  Google Scholar 

  56. Hou, Q., D. W. Grijpma, and J. Feijen. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24:1937–1947, 2003.

    CAS  PubMed  Google Scholar 

  57. Huang, S. P., et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann. Plast. Surg. 69:656–662, 2012.

    CAS  PubMed  Google Scholar 

  58. Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.

    CAS  PubMed  Google Scholar 

  59. Itano, N., et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274:25085–25092, 1999.

    CAS  PubMed  Google Scholar 

  60. Jackson, W. M., L. J. Nesti, and R. S. Tuan. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl. Med. 1:44–50, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Javazon, E. H., et al. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 15:350–359, 2007.

    PubMed  Google Scholar 

  62. Johnson, P. J., S. R. Parker, and S. E. Sakiyama-Elbert. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J. Biomed. Mater. Res. A92:152–163, 2010.

    Google Scholar 

  63. Kakudo, N., A. Shimotsuma, S. Miyake, S. Kushida, and K. Kusumoto. Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold. J. Biomed. Mater. Res. A84:191–197, 2008.

    Google Scholar 

  64. Kennedy, C. I., R. F. Diegelmann, J. H. Haynes, and D. R. Yager. Proinflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J. Pediatr. Surg. 35:874–879, 2000.

    CAS  PubMed  Google Scholar 

  65. Kim, W. S., et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48:15–24, 2007.

    CAS  PubMed  Google Scholar 

  66. Krummel, T. M., et al. Fetal response to injury in the rabbit. J. Pediatr. Surg. 22:640–644, 1987.

    CAS  PubMed  Google Scholar 

  67. Larson, B. J., M. T. Longaker, and H. P. Lorenz. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126:1172–1180, 2010.

    CAS  PubMed  Google Scholar 

  68. Lau, K., R. Paus, S. Tiede, P. Day, and A. Bayat. Exploring the role of stem cells in cutaneous wound healing. Exp. Dermatol. 18:921–933, 2009.

    CAS  PubMed  Google Scholar 

  69. Li, W., K. G. Danielson, P. G. Alexander, and R. S. Tuan. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (caprolactone) scaffolds. J. Biomed. Mater. Res. A67:1105–1114, 2003.

    Google Scholar 

  70. Li, Wu., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.

    CAS  PubMed  Google Scholar 

  71. Liechty, K. W., N. S. Adzick, and T. M. Crombleholme. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12:671–676, 2000.

    CAS  PubMed  Google Scholar 

  72. Livesey, S. A., D. N. Herndon, M. A. Hollyoak, Y. H. Atkinson, and A. Nag. Transplanted acellular allograft dermal matrix: Potential as a template for the reconstruction of viable dermis. Transplantation 60:1–9, 1995.

    CAS  PubMed  Google Scholar 

  73. Loken, S., et al. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surg. Sports Traumatol. Arthrosc. 16:896–903, 2008.

    CAS  PubMed  Google Scholar 

  74. Longaker, M. T., and G. C. Gurtner. Introduction: wound repair. Semin. Cell Dev. Biol. 23:945, 2012.

    PubMed  Google Scholar 

  75. Longaker, M. T., et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann. Surg. 210:667–672, 1989.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Longaker, M. T., et al. Studies in fetal wound healing, VI. Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J. Pediatr. Surg. 25:63–68; discussion 68–69, 1990.

  77. Longaker, M. T., et al. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213:292–296, 1991.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Longaker, M. T., et al. Fetal diaphragmatic wounds heal with scar formation. J. Surg. Res. 50:375–385, 1991.

    CAS  PubMed  Google Scholar 

  79. Longaker, M. T., et al. Adult skin wounds in the fetal environment heal with scar formation. Ann. Surg. 219:65–72, 1994.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Lorenz, H. P., et al. Scarless wound repair: a human fetal skin model. Development 114:253–259, 1992.

    CAS  PubMed  Google Scholar 

  81. Lorenzetti, O. J., B. Fortenberry, E. Busby, and R. Uberman. Influence of microcrystalline collagen on wound healing I. Wound closure of normal excised and burn excised wounds of rats, rabbits, and pigs. In Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, Vol. 140. New York: Royal Society of Medicine, 1972, pp. 896–900.

  82. Lovvorn, H. N., et al. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34:218–223, 1999.

    PubMed  Google Scholar 

  83. Lunderius-Andersson, C., M. Enoksson, and G. Nilsson. Mast cells respond to cell injury through the recognition of IL-33. Front. Immunol. 3:82, 2012.

    PubMed Central  PubMed  Google Scholar 

  84. Ma, L., et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841, 2003.

    CAS  PubMed  Google Scholar 

  85. Madihally, S. V., and H. W. T. Matthew. Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142, 1999.

    CAS  PubMed  Google Scholar 

  86. Madlener, M. Differential expression of matrix metalloproteinases and their physiological inhibitors in acute murine skin wounds. Arch. Dermatol. Res. 290(Suppl):S24–29, 1998.

    CAS  PubMed  Google Scholar 

  87. Mak, K., et al. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J. Dermatol. Sci. 56:168–180, 2009.

    CAS  PubMed  Google Scholar 

  88. Marston, W. A., J. Hanft, P. Norwood, and R. Pollak. The Efficacy and Safety of Dermagraft in Improving the Healing of Chronic Diabetic Foot Ulcers Results of a prospective randomized trial. Diabetes Care 26:1701–1705, 2003.

    PubMed  Google Scholar 

  89. Martin, D. C., J. L. Semple, and M. V. Sefton. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice. J. Biomed. Mater. Res. A93:484–492, 2010.

    Google Scholar 

  90. Mast, B. A., R. F. Diegelmann, T. M. Krummel, and I. K. Cohen. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 13:441–446, 1993.

    CAS  PubMed  Google Scholar 

  91. Mast, B. A., et al. Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: implications for healing by regeneration. Matrix 11:63–68, 1991.

    CAS  PubMed  Google Scholar 

  92. McDevitt, C. A., G. M. Wildey, and R. M. Cutrone. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. A67:637–640, 2003.

    Google Scholar 

  93. Merkel, J. R., B. R. DiPaolo, G. G. Hallock, and D. C. Rice. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc. Soc. Exp. Biol. Med. 187:493–497, 1988.

    CAS  PubMed  Google Scholar 

  94. Mogili, N. S., et al. Altered angiogenic balance in keloids: a key to therapeutic intervention. Translational research. J. Lab. Clin. Med. 159:182–189, 2012.

    Google Scholar 

  95. Mostow, E. N., G. D. Haraway, M. Dalsing, J. P. Hodde, and D. King. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J. Vasc. Surg. 41:837–843, 2005.

    PubMed  Google Scholar 

  96. Naik-Mathuria, B., et al. Age-dependent recruitment of neutrophils by fetal endothelial cells: implications in scarless wound healing. J. Pediatr. Surg. 42:166–171, 2007.

    PubMed  Google Scholar 

  97. Nair, R., S. Shukla, and T. C. McDevitt. Acellular matrices derived from differentiating embryonic stem cells. J. Biomed. Mater. Res. A87:1075–1085, 2008.

    Google Scholar 

  98. Nauta, A., et al. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol. Ther. 21:445–455, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Nettles, D. L., S. H. Elder, and J. A. Gilbert. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 8:1009–1016, 2002.

    CAS  PubMed  Google Scholar 

  100. Niezgoda, J. A., C. C. Van Gils, R. G. Frykberg, and J. P. Hodde. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv. Skin Wound Care 18:258–266, 2005.

    PubMed  Google Scholar 

  101. Okuse, T., T. Chiba, I. Katsuumi, and K. Imai. Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen. 13:491–497, 2005.

    PubMed  Google Scholar 

  102. Olutoye, O. O., X. Zhu, D. L. Cass, and C. W. Smith. Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatr. Res. 58:1290–1294, 2005.

    PubMed  Google Scholar 

  103. Osathanon, T., et al. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29:4091–4099, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Parks, W. C. Matrix metalloproteinases in repair. Wound Repair Regen. 7:423–432, 1999.

    CAS  PubMed  Google Scholar 

  105. Peranteau, W. H., et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J. Invest. Dermatol. 128:1852–1860, 2008.

    CAS  PubMed  Google Scholar 

  106. Perka, C., et al. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21:1145–1153, 2000.

    CAS  PubMed  Google Scholar 

  107. Pittenger, M. F., et al. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    CAS  PubMed  Google Scholar 

  108. Powell, H. M., and S. T. Boyce. EDC cross-linking improves skin substitute strength and stability. Biomaterials 27:5821–5827, 2006.

    CAS  PubMed  Google Scholar 

  109. Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46:1–27, 2000.

    Google Scholar 

  110. Reignier, J., and M. A. Huneault. Preparation of interconnected poly (epsilon-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717, 2006.

    CAS  Google Scholar 

  111. Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31:603–632, 2006.

    CAS  Google Scholar 

  112. Robson, M. C., R. A. Barnett, I. O. Leitch, and P. G. Hayward. Prevention and treatment of postburn scars and contracture. World J. Surg. 16:87–96, 1992.

    CAS  PubMed  Google Scholar 

  113. Romanelli, M., V. Dini, and M. S. Bertone. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv. Skin Wound Care 23:34–38, 2010.

    PubMed  Google Scholar 

  114. Romanelli, M., V. Dini, M. Bertone, S. Barbanera, and C. Brilli. OASIS wound matrix versus Hyaloskin in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. Int. Wound J. 4:3–7, 2007.

    PubMed  Google Scholar 

  115. Rowlatt, U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch. A Pathol. Anat. Histol. 381:353–361, 1979.

    CAS  PubMed  Google Scholar 

  116. Ruszczak, Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev. 55:1595–1611, 2003.

    CAS  PubMed  Google Scholar 

  117. Sarkar, M. R., et al. Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27:1817–1823, 2006.

    CAS  PubMed  Google Scholar 

  118. Sasaki, M., et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 180:2581–2587, 2008.

    CAS  PubMed  Google Scholar 

  119. Satish, L., and S. Kathju. Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatol. Res. Pract. 2010:790234, 2010.

    PubMed Central  PubMed  Google Scholar 

  120. Schaffler, A., and C. Buchler. Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827, 2007.

    PubMed  Google Scholar 

  121. Scheid, A., et al. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J. 16:411–413, 2002.

    CAS  PubMed  Google Scholar 

  122. Shimada, E., and G. Matsumura. Viscosity and molecular weight of hyaluronic acids. J. Biochem. 78:513–517, 1975.

    CAS  PubMed  Google Scholar 

  123. Shukla, S., et al. Synthesis and organization of hyaluronan and versican by embryonic stem cells undergoing embryoid body differentiation. J. Histochem. Cytochem. 58:345–358, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Singer, A. J., and R. A. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999.

    CAS  PubMed  Google Scholar 

  125. Soo, C., et al. Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. Am. J. Pathol. 157:423–433, 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Spicer, A. P., M. L. Augustine, and J. A. McDonald. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J. Biol. Chem. 271:23400–23406, 1996.

    CAS  PubMed  Google Scholar 

  127. Spicer, A. P., and J. A. McDonald. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 273:1923–1932, 1998.

    CAS  PubMed  Google Scholar 

  128. Stone, K. R., W. G. Rodkey, R. Webber, L. McKinney, and J. R. Steadman. Meniscal regeneration with copolymeric collagen scaffolds In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am. J. Sports Med. 20:104–111, 1992.

    CAS  PubMed  Google Scholar 

  129. Stone, K. R., J. R. Steadman, W. G. Rodkey, and S. T. Li. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J. Bone Joint Surg. 79:1770–1777, 1997.

    CAS  PubMed  Google Scholar 

  130. Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194, 2003.

    CAS  PubMed  Google Scholar 

  131. Tobita, M., H. Orbay, and H. Mizuno. Adipose-derived stem cells: current findings and future perspectives. Discov. Med. 11:160–170, 2011.

    PubMed  Google Scholar 

  132. Tomihata, K., and Y. Ikada. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575, 1997.

    CAS  PubMed  Google Scholar 

  133. Uijtdewilligen, P. J., et al. Towards embryonic-like scaffolds for skin tissue engineering: identification of effector molecules and construction of scaffolds. J. Tissue Eng. Regen. Med. 2013. doi: 10.1002/term.1725.

  134. van der Veer, W. M., et al. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen. 19:292–301, 2011.

    PubMed  Google Scholar 

  135. Vaz, C. M., S. Van Tuijl, C. V. C. Bouten, and F. P. T. Baaijens. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 1:575–582, 2005.

    CAS  PubMed  Google Scholar 

  136. Wainwright, D. J. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21:243–248, 1995.

    CAS  PubMed  Google Scholar 

  137. Wainwright, D., et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J. Burn Care Res. 17:124–136, 1996.

    CAS  Google Scholar 

  138. Wanitphakdeedecha, R., T. M. Chen, and T. H. Nguyen. The use of acellular, fetal bovine dermal matrix for acute, full-thickness wounds. J. Drugs Dermatol. JDD7:781–784, 2008.

    Google Scholar 

  139. Whitby, D. J., and M. W. Ferguson. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 112:651–668, 1991.

    CAS  PubMed  Google Scholar 

  140. Whitby, D. J., M. T. Longaker, M. R. Harrison, N. S. Adzick, and M. W. Ferguson. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. J. Cell Sci. 99(Pt 3):583–586, 1991.

    PubMed  Google Scholar 

  141. Wilgus, T. A. Immune cells in the healing skin wound: influential players at each stage of repair. Pharmacol. Res. 58:112–116, 2008.

    CAS  PubMed  Google Scholar 

  142. Wilgus, T. A., A. M. Ferreira, T. M. Oberyszyn, V. K. Bergdall, and L. A. Dipietro. Regulation of scar formation by vascular endothelial growth factor. Laboratory investigation. J. Tech. Methods Pathol. 88:579–590, 2008.

    CAS  Google Scholar 

  143. Wilson, G. J., D. W. Courtman, P. Klement, J. Michael Lee, and H. Yeger. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg. 60:S353–S358, 1995.

    CAS  PubMed  Google Scholar 

  144. Wu, Y., L. Chen, P. G. Scott, and E. E. Tredget. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659, 2007.

    CAS  PubMed  Google Scholar 

  145. Wulff, B. C., et al. Mast cells contribute to scar formation during fetal wound healing. J. Invest. Dermatol. 132:458–465, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Xiao, Y., H. Qian, W. G. Young, and P. M. Bartold. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng. 9:1167–1177, 2003.

    CAS  PubMed  Google Scholar 

  147. Yang, X. B., R. S. Bhatnagar, S. Li, and R. O. C. Oreffo. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng. 10:1148–1159, 2004.

    CAS  PubMed  Google Scholar 

  148. Yoshimoto, H., Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082, 2003.

    CAS  PubMed  Google Scholar 

  149. Zong, X., et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338, 2005.

    CAS  PubMed  Google Scholar 

  150. Zhang, X., et al. Expansion and delivery of human fibroblasts on micronized acellular dermal matrix for skin regeneration. Biomaterials 30:2666–2674, 2009.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ingrid Lai and William Shu for their generous gift support of this work. This work was supported in part by a grant from NIH grant R01 GM087609 (to H.P.L.).

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Peter Lorenz.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M.S., Maan, Z.N., Wu, JC. et al. Tissue Engineering and Regenerative Repair in Wound Healing. Ann Biomed Eng 42, 1494–1507 (2014). https://doi.org/10.1007/s10439-014-1010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1010-z

Keywords

Navigation