Skip to main content
Log in

A kinetic analysis of thermal decomposition of ortho-substituted polyaniline derivatives

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A plethora of studies in conjugated polymer modification is aimed at improving their physicochemical properties for practical application. Functionalization of polyaniline (PANI) by introducing a substituent on the aromatic ring is an effective way to achieve high solubility. In this regard, this study was focused on the investigation of the thermal stability of three PANI derivatives with ortho-substituents of various structures using thermogravimetric analysis at different heating rates (5, 10, 15, and 20 °C min−1) in a nitrogen atmosphere. The results of TGA and DTG showed that the process of thermal degradation of PANI derivatives proceeded according to a complex multistage mechanism. Using the Coats–Redfern integral method and 10 basic models, activation energies and pre-exponential factors were calculated for three stages of polymer thermal degradation. According to the results, with the highest linear regression coefficient, the second-order reaction model (F2) was the most suitable for the initial period of decomposition, while diffusion (D1, D2, D3) and interfacial (S1, S2) models were suitable for high-temperature stages. All models showed a positive ΔH. The highest ΔG values were obtained using diffusion and interfacial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Samadi A, Xie M, Li J, Shon H, Zheng C, Zhao S (2021) Polyaniline-based adsorbents for aqueous pollutants removal: a review. J Chem Eng 418:129425. https://doi.org/10.1016/j.cej.2021.129425

    Article  CAS  Google Scholar 

  2. Kazemi F, Naghib SM, Mohammadpour Z (2020) Multifunctional micro-/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater Today Chem 16:100249. https://doi.org/10.1016/j.mtchem.2020.100249

    Article  CAS  Google Scholar 

  3. Andriianova AN, Salikhov RB, Latypova LR, Mullagaliev IN, Salikhov TR, Mustafin AG (2022) The structural factors affecting the humidity sensing properties of polyaniline derivatives. Sustain Energy Fuels 6:3435. https://doi.org/10.1039/D2SE00405D

    Article  CAS  Google Scholar 

  4. Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173. https://doi.org/10.1016/j.envres.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  5. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sour 424:108. https://doi.org/10.1016/j.jpowsour.2019.03.094

    Article  CAS  Google Scholar 

  6. Gao F, Mu J, Bi Z, Wang S, Li Z (2021) Recent advances of polyaniline composites in anticorrosive coatings: a review. Prog Org Coat 151:106071. https://doi.org/10.1016/j.porgcoat.2020.106071

    Article  CAS  Google Scholar 

  7. Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2019) Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem 63:1. https://doi.org/10.1021/acs.jmedchem.9b00803

    Article  CAS  PubMed  Google Scholar 

  8. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26:5333. https://doi.org/10.1007/s11356-018-3990-y

    Article  CAS  Google Scholar 

  9. Andriianova AN, Biglova YN, Mustafin AG (2020) Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 10:7468. https://doi.org/10.1039/C9RA08644G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Latypova LR, Andriianova AN, Salikhov SM, Mullagaliev IN, Salikhov RB, Abdrakhmanov IB, Mustafin AG (2020) Synthesis and physicochemical properties of poly [2-(2-chloro-1-methylbut-2-en-1-yl) aniline] obtained with various dopants. Polym Int 69:804. https://doi.org/10.1002/pi.6016

    Article  CAS  Google Scholar 

  11. Salikhov RB, Mustafin AG, Mullagaliev IN, Salikhov TR, Andriianova AN, Latypova LR, Sharafullin IF (2021) Photoconductivity of thin films obtained from a new type of polyindole. Materials 15:228. https://doi.org/10.3390/ma15010228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andriianova AN, Latypova LR, Vasilova LY, Kiseleva SV, Zorin VV, Abdrakhmanov IB, Mustafin AG (2021) Antibacterial properties of polyaniline derivatives. J Appl Polym Sci 138:51397. https://doi.org/10.1002/app.51397

    Article  CAS  Google Scholar 

  13. Zabihi O, Khodabandeh A (2013) Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim 112:1507. https://doi.org/10.1007/s10973-012-2675-x

    Article  CAS  Google Scholar 

  14. Zhang S, Wang S, Huang Z, Li Y, Tan Z (2015) A kinetic analysis of thermal decomposition of polyaniline and its composites with rare earth oxides. J Therm Anal Calorim 119:1853. https://doi.org/10.1007/s10973-014-4309-y

    Article  CAS  Google Scholar 

  15. Wang S, Tan Z, Li Y, Sun L, Li Y (2008) A kinetic analysis of thermal decomposition of polyaniline/ZrO2 Composite. J Therm Anal Calorim 92:483. https://doi.org/10.1007/s10973-007-8356-5

    Article  CAS  Google Scholar 

  16. Hosny NM, Badr M, El-Dossoki FI (2019) Copolymer of m-phenylenediamine and anthranilic acid (P (mPDA-co-AA): new precursor of MnO nanoparticles. Polym Plast Technol Eng 58:1178. https://doi.org/10.1080/03602559.2018.1542724

    Article  CAS  Google Scholar 

  17. Alves WF, Malmonge JA, Mattoso LHC, Medeiros ESD (2018) Non-isothermal decomposition kinetics of conductive polyaniline and its derivatives. Polímeros 28:285. https://doi.org/10.1590/0104-1428.03116

    Article  Google Scholar 

  18. Pielichowski K (1997) Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ion 104:123. https://doi.org/10.1016/S0167-2738(97)00396-2

    Article  CAS  Google Scholar 

  19. Alves WF, Venancio EC, Leite FL, Kanda DH, Malmonge LF, Malmonge JA, Mattoso LH (2010) Thermo-analyses of polyaniline and its derivatives. Thermochim Acta 502:43. https://doi.org/10.1016/j.tca.2010.02.003

    Article  CAS  Google Scholar 

  20. Jeevananda T (2001) Thermal and morphological studies on ethylene-vinyl acetate copolymer–polyaniline blends. Thermochim acta 376:51. https://doi.org/10.1016/S0040-6031(01)00530-5

    Article  CAS  Google Scholar 

  21. Pashaei S, Hosseinzadeh S, Hosseinzadeh H (2019) TGA investigation and morphological properties study of nanocrystalline cellulose/ag-nanoparticles nanocomposites for catalytic control of oxidative polymerization of aniline. Polym Compos 40:E753. https://doi.org/10.1002/pc.25000

    Article  CAS  Google Scholar 

  22. Gul H, Shah AUHA, Gul S, Arjomandi J, Bilal S (2018) Study on the thermal decomposition kinetics and calculation of activation energy of degradation of poly (o-toluidine) using thermogravimetric analysis. Iran J Chem Chem Eng 37:193. https://doi.org/10.30492/ijcce.2018.30883

    Article  CAS  Google Scholar 

  23. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim acta 552:54. https://doi.org/10.1016/j.tca.2012.11.003

    Article  CAS  Google Scholar 

  24. Krishna SV, Pugazhenthi G (2011) Properties and thermal degradation kinetics of polystyrene/organoclay nanocomposites synthesized by solvent blending method: effect of processing conditions and organoclay loading. J Appl Polym Sci 120:1322. https://doi.org/10.1002/app.33179

    Article  CAS  Google Scholar 

  25. Andriianova A, Shigapova A, Biglova Y, Salikhov R, Abdrakhmanov I, Mustafin A (2019) Synthesis and physico-chemical properties of (co) polymers of 2-[(2E)-1-methyl-2-buten-1-yl] aniline and aniline. Chin J Polym Sci 37:774. https://doi.org/10.1007/s10118-019-2261-9

    Article  CAS  Google Scholar 

  26. Andriianova AN, Gribko DE, Petrov IS, Mullagaliev I, Sattarova AF, Salikhov RB, Mustafin AG (2021) Synthesis and physicochemical properties of poly[2-(cyclohex-2-en-1-yl)aniline] as a new polyaniline derivative. New J Chem 45:6356. https://doi.org/10.1039/D1NJ00596K

    Article  CAS  Google Scholar 

  27. Andriianova AN, Gribko DE, Mullagaliev IN, Salikhov RB, Mustafin AG (2021) Influence of synthesis conditions on the physicochemical properties of poly-2-[(2E)-1-methyl-2-buten-1-yl] aniline. Polym Sci Ser B 63:135. https://doi.org/10.1134/S1560090421020032

    Article  CAS  Google Scholar 

  28. Andriianova AN, Sadykov TT, Mustafin AG (2021) Synthesis and physicochemical properties of poly-2-[(2E)-1-methyl-1-buten-1-yl]aniline and its copolymers. ChemistrySelect 6:8942. https://doi.org/10.1002/slct.202102184

    Article  CAS  Google Scholar 

  29. Andriianova AN, Mustafin AG (2022) Synthesis and physicochemical properties of (co) polymers based on aniline and its ortho-cycloalkenyl-substituted derivatives. Polym Bull. https://doi.org/10.1007/s00289-022-04554-y

    Article  Google Scholar 

  30. Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Shahbaz M (2019) Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats–Redfern method. Renew Energy 131:854. https://doi.org/10.1016/j.renene.2018.07.094

    Article  CAS  Google Scholar 

  31. Chan HSO, Gan LM, Hor TSA, Seow SH, Zhang LH (1993) Thermal analysis of conducting polymers. Part 3. Isothermal thermogravimetry of doped and pristine polyaniline. Thermochim Acta 225:75. https://doi.org/10.1016/0040-6031(93)85084-M

    Article  CAS  Google Scholar 

  32. Souza NC, Silva NC, Giacometti JA, Oliveira ON Jr (2006) H-bonding in entrapped water in poly(o-methoxyaniline): results from a differential scanning calorimetry study. Thermochim Acta 441:124. https://doi.org/10.1016/j.tca.2005.12.016

    Article  CAS  Google Scholar 

  33. Huang L, Liu J, He Y, Sun S, Chen J, Sun J, Kuo J (2016) Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresour Technol 218:631. https://doi.org/10.1016/j.biortech.2016.06.133

    Article  CAS  PubMed  Google Scholar 

  34. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2:133

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project number 22-23-00623.

Author information

Authors and Affiliations

Authors

Contributions

ANA and AGM designed the concept of the study. ANA and TTS conducted polymer synthesis and performed the thermal analysis. ANA performed calculations and analyzed the results of study, took the lead in writing the manuscript and wrote all sections under supervision of AGM All authors provided critical feedback and contributed to the discussions as well as revision of the manuscript.

Corresponding author

Correspondence to Anastasia N. Andriianova.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 512 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriianova, A.N., Sadykov, T.T. & Mustafin, A.G. A kinetic analysis of thermal decomposition of ortho-substituted polyaniline derivatives. Polym. Bull. 81, 2701–2718 (2024). https://doi.org/10.1007/s00289-023-04841-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04841-2

Keywords

Navigation