Skip to main content
Log in

Chitosan nanoparticles containing α-pinene and Rosmarinus officinalis L. essential oil: effects on human melanoma cells’ viability and expression of apoptosis-involved genes

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Melanoma is the most dreadful type of skin cancer; due to the side effects and drug resistance of chemotherapeutic drugs, the development of new herbal drugs has received more attention. In this study, the chemical composition of Rosmarinus officinalis L. essential oil, one of the most common medicinal plants, using gas chromatography–mass spectrometry (GC–MS) analysis was first identified. Then, chitosan nanoparticles containing the essential oil and α-pinene (identified major compound) with particle sizes of 69 ± 5 and 102 ± 6 nm and zeta potentials of 42.8 ± 0.9 and 41.7 ± 1 mV, respectively, were prepared. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis confirmed the successful loading of the essential oil and α-pinene into the nanoparticles. Besides, a polyethylene oxide–alginate electrospun scaffold (363 ± 20 nm) was proposed as a neutral dressing; it did not affect the viability of A-375 human melanoma cells. Moreover, the efficacy of chitosan nanoparticles containing α-pinene with IC50 value of 76.4 µg/mL was significantly more potent than chitosan nanoparticles containing R. officinalis essential oil (120.0 µg/mL), non-formulated essential oil (474.5 µg/mL), and non-formulated α-pinene (173.5 µg/mL). As the Bax/Bcl2 ratio was greater than 1 in all samples, it was confirmed that their effect on cell viability occurred through the apoptosis pathway. Considering obtained results, chitosan nanoparticles containing α-pinene could be considered for in vivo study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are available from corresponding authors on reasonable request.

References

  1. Sreedhar A, Li J, Zhao Y (2018) Next-gen therapeutics for skin cancer: Nutraceuticals. Nutr Cancer 70(5):697–709. https://doi.org/10.1080/01635581.2018.1470651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Juszczak AM, Czarnomysy R, Strawa JW, ZovkoKončić M, Bielawski K, Tomczyk M (2021) In vitro anticancer potential of Jasione montana and its main components against human amelanotic melanoma cells. Int J Mol Sci 22(7):3345. https://doi.org/10.3390/ijms22073345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tripp MK, Watson M, Balk SJ, Swetter SM, Gershenwald JE (2016) State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA: Canc J Clin 66(6):460–480. https://doi.org/10.3322/caac.21352

    Article  Google Scholar 

  4. Pavithra P, Mehta A, Verma RS (2019) Essential oils: from prevention to treatment of skin cancer. Drug Discovery Today 24(2):644–655. https://doi.org/10.1016/j.drudis.2018.11.020

    Article  CAS  PubMed  Google Scholar 

  5. Kamyar K, Hiva A, Hadi B, Negar R, Mahmoud O (2022) Chitosan nanoparticles containing cinnamomum verum J.presl essential oil and cinnamaldehyde: preparation, characterization and anticancer effects against melanoma and breast cancer cells. Trad Integr Med 7(1):1–12. https://doi.org/10.18502/tim.v7i1.9058

    Article  Google Scholar 

  6. Domingues B, Lopes JM, Soares P, Pópulo H (2018) Melanoma treatment in review. ImmunoTarg Therapy 7:35–49. https://doi.org/10.2147/ITT.S134842

    Article  CAS  Google Scholar 

  7. Glanz K, Buller DB, Saraiya M (2007) Reducing ultraviolet radiation exposure among outdoor workers: state of the evidence and recommendations. Environ Health 6:22. https://doi.org/10.1186/1476-069X-6-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson MA, Schuchter LM (2016) Chemotherapy for Melanoma. In: Kaufman HL, Mehnert JM (eds) Melanoma. Springer, Cham, pp 209–229. https://doi.org/10.1007/978-3-319-22539-5_8

    Chapter  Google Scholar 

  9. Hofman M, Ryan JL, Figueroa-Moseley CD, Jean-Pierre P, Morrow GR (2007) Cancer-related fatigue: the scale of the problem. Oncologist 12(S1):4–10. https://doi.org/10.1634/theoncologist.12-S1-4

    Article  PubMed  Google Scholar 

  10. Naidu MUR, Ramana GV, Rani PU, Suman A, Roy P (2004) Chemotherapy-induced and/or radiation therapy-induced oral mucositis-complicating the treatment of cancer. Neoplasia 6(5):423–431. https://doi.org/10.1593/neo.04169

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wode K, Henriksson R, Sharp L, Stoltenberg A, Hök Nordberg J (2019) Cancer patients’ use of complementary and alternative medicine in Sweden: a cross-sectional study. BMC Compl Altern Med 19(1):62. https://doi.org/10.1186/s12906-019-2452-5

    Article  Google Scholar 

  12. Osanloo M, Ghaznavi G, Abdollahi A (2020) Sureveying the chemical composition and antibacterial activity of essential oils from selected medicinal plants against human pathogens. Iran J Microbiol 12(6):577–583. https://doi.org/10.18502/ijm.v12i6.5032

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahmoud O, Ali G, Ali T (2021) Antioxidant and anticancer activities of anethum graveolens L., Citrus limon (L.) osbeck and zingiber officinale roscoe essential oils. Trad Integr Med 6(4):333–347. https://doi.org/10.18502/tim.v6i4.8266

    Article  Google Scholar 

  14. NoorpishehGhadimi S, Sharifi N, Osanloo M (2020) The leishmanicidal activity of essential oils: a systematic review. J Herbmed Pharmacol 9(4):300–308. https://doi.org/10.34172/jhp.2020.38

    Article  Google Scholar 

  15. Moemenbellah-Fard M, Abdollahi A, Ghanbariasad A, Osanloo M (2020) Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient, eugenol. Flavour Fragr J 35(5):534–540. https://doi.org/10.1002/ffj.3595

    Article  CAS  Google Scholar 

  16. Montenegro L, Pasquinucci L, Zappalà A, Chiechio S, Turnaturi R, Parenti C (2017) Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles. Pharmaceutics 9(4):48. https://doi.org/10.3390/pharmaceutics9040048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Macedo LM, Santos ÉMd, Militão L, Tundisi LL, Ataide JA, Souto EB, Mazzola PG (2020) Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: a review. Plants 9(5):651. https://doi.org/10.3390/plants9050651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore J, Yousef M, Tsiani E (2016) Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8(11):731. https://doi.org/10.3390/nu8110731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S (2017) Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lip Health Dis 16(1):1–10. https://doi.org/10.1186/s12944-017-0580-9

    Article  CAS  Google Scholar 

  20. Hou J, Zhang Y, Zhu Y, Zhou B, Ren C, Liang S, Guo Y (2019) α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med Sci Monitor: Int Med J Exper Clin Res 25:6631–6638. https://doi.org/10.12659/MSM.916419

    Article  CAS  Google Scholar 

  21. Alipanah H, Yarian F, Rasti F, Safari M, Hatami S, Osanloo M (2022) Cytotoxic effects of chitosan nanoparticles containing Zataria multiflora essential oil against human breast and melanoma cells. Beni-Suef University J Basic Appl Sci 11:58. https://doi.org/10.1186/s43088-022-00241-z

    Article  Google Scholar 

  22. Alipanah H, Rasti F, Zarenezhad E, Dehghan A, Sahebnazar B, Osanloo M (2021) Comparison of anticancer effects of carvone, carvone-rich essential oils, and chitosan nanoparticles containing each of them. Biointerf Res Appl Chem 12(4):5716–5726. https://doi.org/10.33263/BRIAC124.57165726

    Article  Google Scholar 

  23. Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF (2011) Mucoadhesive drug delivery systems. J Pharm Bioall Sci 3(1):89–100. https://doi.org/10.4103/0975-7406.76478

    Article  CAS  Google Scholar 

  24. Kim ES, Kim DY, Lee J-S, Lee HG (2019) Mucoadhesive chitosan–gum arabic nanoparticles enhance the absorption and antioxidant activity of quercetin in the intestinal cellular environment. J Agric Food Chem 67(31):8609–8616. https://doi.org/10.1021/acs.jafc.9b00008

    Article  CAS  PubMed  Google Scholar 

  25. Qasemi H, Fereidouni Z, Karimi J, Abdollahi A, Zarenezhad E, Rasti F, Osanloo M (2021) Promising antibacterial effect of impregnated nanofiber mats with a green nanogel against clinical and standard strains of Pseudomonas aeruginosa and Staphylococcus aureus. J Drug Del Sci Technol 66:102844. https://doi.org/10.1016/j.jddst.2021.102844

    Article  CAS  Google Scholar 

  26. Sanei-Dehkordi A, Moemenbellah-Fard MD, Sereshti H, Shahriari-Namadi M, Zarenezhad E, Osanloo M (2021) Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils; repellent and larvicidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. Chem Pap 75:6545–6556. https://doi.org/10.1007/s11696-021-01829-y

    Article  CAS  Google Scholar 

  27. Valizadeh A, Khaleghi AA, Alipanah H, Zarenezhad E, Osanloo M (2021) Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines. BioNanoScience 11:678–686. https://doi.org/10.1007/s12668-021-00880-z

    Article  Google Scholar 

  28. Kelidari HR, Alipanah H, Roozitalab G, Ebrahimi M, Osanloo M (2022) Anticancer effect of solid-lipid nanoparticles containing mentha longifolia and mentha pulegium essential oils: in vitro study on human melanoma and breast cancer cell lines. Biointerf Res Appl Chem 12(2):2128–2137. https://doi.org/10.33263/BRIAC122.21282137

    Article  CAS  Google Scholar 

  29. Diep E, Schiffman JD (2021) Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater Sci 9(12):4364–4373. https://doi.org/10.1039/D0BM02205E

    Article  CAS  PubMed  Google Scholar 

  30. Anilkumar K, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polymer J 89:249–262. https://doi.org/10.1016/j.eurpolymj.2017.02.004

    Article  CAS  Google Scholar 

  31. Zhou Y, Qi P, Zhao Z, Liu Q, Li Z (2014) Fabrication and characterization of fibrous HAP/PVP/PEO composites prepared by sol-electrospinning. RSC Adv 4(32):16731–16738. https://doi.org/10.1039/C3RA47168C

    Article  CAS  Google Scholar 

  32. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350. https://doi.org/10.1016/j.jfoodeng.2012.02.012

    Article  CAS  Google Scholar 

  33. Ellithy MM, Aly RM, Tarek HE-S (2022) Nanoformulated rosemary extract impact on oral cancer: in vitro study. Bull Nat Res Centre 46:195. https://doi.org/10.1186/s42269-022-00895-w

    Article  Google Scholar 

  34. Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohyd Polym 81(2):243–251. https://doi.org/10.1016/j.carbpol.2010.02.026

    Article  CAS  Google Scholar 

  35. Viswanadh MK, Mehata AK, Sharma V, Priya V, Varshney N, Mahto SK, Muthu MS (2021) Bioadhesive chitosan nanoparticles: dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym 274:118617. https://doi.org/10.1016/j.carbpol.2021.118617

    Article  CAS  PubMed  Google Scholar 

  36. Alipanah H, Farjam M, Zarenezhad E, Roozitalab G, Osanloo M (2021) Chitosan nanoparticles containing limonene and limonene-rich essential oils: potential phytotherapy agents for the treatment of melanoma and breast cancers. BMC Compl Med Therapies 21:186. https://doi.org/10.1186/s12906-021-03362-7

    Article  CAS  Google Scholar 

  37. Wu J, Shu Q, Niu Y, Jiao Y, Chen Q (2018) Preparation, characterization, and antibacterial effects of chitosan nanoparticles embedded with essential oils synthesized in an ionic liquid containing system. J Agric Food Chem 66(27):7006–7014. https://doi.org/10.1021/acs.jafc.8b01428

    Article  CAS  PubMed  Google Scholar 

  38. Mohammadifar M, Aarabi MH, Aghighi F, Kazemi M, Vakili Z, Memarzadeh MR, Talaei SA (2021) Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: behavioral, biochemical, and histopathological evidence. BMC Compl Med Therapies 21:57. https://doi.org/10.1186/s12906-021-03236-y

    Article  CAS  Google Scholar 

  39. Mishra RK, Ha SK, Verma K, Tiwari SK (2018) Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J Sci: Adv Mater Devices 3:263–288. https://doi.org/10.1016/j.jsamd.2018.05.003

    Article  Google Scholar 

  40. Kenry LCT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

    Article  CAS  Google Scholar 

  41. Roozitalab G, Yousefpoor Y, Abdollahi A, Safari M, Rasti F, Osanloo M (2022) Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chem Pap 76:4261–4271. https://doi.org/10.1007/s11696-022-02185-1

    Article  CAS  Google Scholar 

  42. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11):3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  45. Mokhena TC, Mochane MJ, Mtibe A, John MJ, Sadiku ER, Sefadi JS (2020) Electrospun alginate nanofibers toward various applications: a review. Materials 13(4):934. https://doi.org/10.3390/ma13040934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Penton KE, Kinler Z, Davis A, Spiva JA, Hamilton SK (2022) Electrospinning drug-loaded alginate-based nanofibers towards developing a drug release rate catalog. Polymers 14(14):2773. https://doi.org/10.3390/polym14142773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan TT, DiGeorge Foushee AM, Johnson MC, Jockheck-Clark AR, Stahl JM (2018) Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanosc Res Lett 13:88. https://doi.org/10.1186/s11671-018-2491-8

    Article  CAS  Google Scholar 

  48. Mahamuni-Badiger PP, Patil PM, Patel PR, Dhanavade MJ, Badiger MV, Marathe YN, Bohara RA (2020) Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/polyethylene oxide (PEO) microfibers reinforced with ZnO nanocrystals for antibacterial and antibiofilm wound dressing applications. New J Chem 44(23):9754–9766. https://doi.org/10.1039/D0NJ01384F

    Article  CAS  Google Scholar 

  49. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NB (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42(19):8163–8170. https://doi.org/10.1016/S0032-3861(01)00336-6

    Article  CAS  Google Scholar 

  50. Aluigi A, Varesano A, Montarsolo A, Vineis C, Ferrero F, Mazzuchetti G, Tonin C (2007) Electrospinning of keratin/poly (ethylene oxide) blend nanofibers. J Appl Polym Sci 104(2):863–870. https://doi.org/10.1002/app.25623

    Article  CAS  Google Scholar 

  51. Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JH (2011) α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun 411(2):449–454. https://doi.org/10.1016/j.bbrc.2011.06.176

    Article  CAS  PubMed  Google Scholar 

  52. Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD, Poon IK (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7:14444. https://doi.org/10.1038/s41598-017-14305-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edlich F (2018) BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 500(1):26–34. https://doi.org/10.1016/j.bbrc.2017.06.190

    Article  CAS  PubMed  Google Scholar 

  54. Zhao L, Gu Q, Xiang L, Dong X, Li H, Ni J, Wan L, Cai G, Chen G (2017) Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Ther Clin Risk Manag 13:1099–1105. https://doi.org/10.2147/TCRM.S141738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allegra A, Tonacci A, Pioggia G, Musolino C, Gangemi S (2020) Anticancer activity of Rosmarinus officinalis L.: mechanisms of action and therapeutic potentials. Nutrients 12(6):1739. https://doi.org/10.3390/nu12061739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavinato M, Waltenberger B, Baraldo G, Grade CVC, Stuppner H, Jansen-Dürr P (2017) Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 18(4):499–516. https://doi.org/10.1007/s10522-017-9715-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Korać RR, Khambholja KM (2011) Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 5(10):164–173. https://doi.org/10.4103/0973-7847.91114

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martin R, Pierrard C, Lejeune F, Hilaire P, Breton L, Bernerd F (2008) Photoprotective effect of a water-soluble extract of Rosmarinus officinalis L against UV-induced matrix metalloproteinase-1 in human dermal fibroblasts and reconstructed skin. Eur J Dermatol 18(2):128–135. https://doi.org/10.1684/ejd.2008.0349

    Article  PubMed  Google Scholar 

  59. Karthikeyan R, Kanimozhi G, Prasad NR, Agilan B, Ganesan M, Srithar G (2018) Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sci 212:150–158. https://doi.org/10.1016/j.lfs.2018.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Fasa University of Medical Science (Grant No. 400229).

Author information

Authors and Affiliations

Authors

Contributions

HR prepared nanoparticles and contributed to MTT and RT-qPCR assays. AGh and AM performed the RT-qPCR assay. MHM revised MS. RH interpreted ATR-FTIR. MS prepared and characterized nanofibers. MO designed the study, analyzed data, and drafted the manuscript. All authors contributed to the drafting, and they approved the final version.

Corresponding author

Correspondence to Mahmoud Osanloo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

The Fasa University of Medical Sciences ethics committee has ethically approved this study, IR.FUMS.REC.1401.021.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, H., Ghanbariasad, A., Meshkibaf, M.H. et al. Chitosan nanoparticles containing α-pinene and Rosmarinus officinalis L. essential oil: effects on human melanoma cells’ viability and expression of apoptosis-involved genes. Polym. Bull. 81, 2505–2523 (2024). https://doi.org/10.1007/s00289-023-04839-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04839-w

Keywords

Navigation