Skip to main content
Log in

Water absorption kinetics of palygorskite nanoclay/polypropylene composite foams

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work studies the water absorption kinetics of polypropylene foams modified with palygorskite nanoclay. The polypropylene/palygorskite composites were prepared with a modular twin-screw extruder and then foamed in a conical twin-screw extruder. The mechanisms of water absorption kinetics of the polypropylene/palygorskite foams were analyzed using a multi-stage model to understand the influence of the clay concentration, nanoclay dispersion and foam cell morphology on the water absorption behaviour of the foams. The solid nanocomposites were characterized by transmission electron microscopy to measure the clay dispersion in the matrix. The nano-reinforced foams were characterized by optical microscopy to measure the cell size and by scanning electron microscopy to measure the size of the foam micropores. Water absorption, foam density and cell morphology were also measured. The nanoclay modifies the foam cellular structure, generating non-homogeneous and non-uniform open cells; these cells encompass micropores which facilitate water diffusion consequently the water absorption properties of the foams are modified. The different screw configurations used during the extrusion process of the composites yield polypropylene foams with different clay dispersion and consequently different foam cellular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang S, Wang K, Pang Y, Li Y, Wu F, Wang S, Sheng W (2016) Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials. J Appl Polym Sci 133:1–10

    Google Scholar 

  2. Keshavarz A, Zilouei H, Abdolmaleki A, Asadinezhad A, Nikkhah A (2016) Impregnation of polyurethane foam with activated carbon for enhancing oil removal from water. Int J Environ Sci Technol 13:699–710

    CAS  Google Scholar 

  3. Shao L, Ji Z, Ma J, Xue C, Deng F (2017) Morphology and interaction of nanocomposite foams formed with organo-palygorskite and ethylene-vinyl acetate copolymers. Polym Bull 74:413–429

    CAS  Google Scholar 

  4. Hwang S, Hsu PP (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383

    CAS  Google Scholar 

  5. Seraji SM, Razavi MK, Davari M, Salami M, Khelgati SH (2011) Effect of clay dispersion on the cell structure of LDPE/clay nanocomposite foams. Polym Compos 32:1095–1105

    CAS  Google Scholar 

  6. Guo MC, Heuzey MC, Carreau PJ (2007) Cell structure and dynamic properties of injection molded polypropylene foams. Polym Eng Sci 47:1070–1081

    CAS  Google Scholar 

  7. Ladhari A, Daly HB, Belhadjsalah H, Cole KC, Denault J (2010) Investigation of water absorption in clay-reinforced polypropylene nanocomposites. Polym Degrad Stab 95:429–439

    CAS  Google Scholar 

  8. Perez RR (2013) Estudio de la estructura celular y de las propiedades de absorción de agua en espumas de Polipropileno reforzado con Paligorskita. Unidad de materiales Centro de Investigación Científica de Yucatán A.C., México

    Google Scholar 

  9. Duncan B, Urquhart J, Roberts S (2005) Review of measurement and modelling of permeation and diffusion in polymers. National Physical Laboratory Middlesex, London

    Google Scholar 

  10. Pilli SP, Smith LV, Vaithiyalingam S (2014) Measuring time-dependent diffusion in polymer matrix composites. Mech Time-Depend Mater 18:633–641

    ADS  CAS  Google Scholar 

  11. Cai LW, Weitsman Y (1994) Non-Fickian moisture diffusion in polymeric composites. J Compos Mater 28:130–154

    CAS  Google Scholar 

  12. Gautam R, Bassi A, Yanful E (2007) A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141:85–108

    CAS  PubMed  Google Scholar 

  13. Chow W, Bakar AA, Ishak ZM (2005) Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites. J Appl Polym Sci 98(2):780–790

    CAS  Google Scholar 

  14. Tajvidi M, Najafi SK, Moteei N (2006) Long-term water uptake behavior of natural fiber/polypropylene composites. J Appl Polym Sci 99:2199–2203

    CAS  Google Scholar 

  15. Earl J, Shenoi R (2004) Determination of the moisture uptake mechanism in closed cell polymeric structural foam during hygrothermal exposure. J Compos Mater 38:1345–1365

    CAS  Google Scholar 

  16. Perez RR, Peña-Quintal A, Gonzalez PI (2019) Cellular structure of PP/PPma/Palygorskite and its capacity to absorb water. Mater Res Express 6:105357

    ADS  Google Scholar 

  17. Pinto J, Athanassiou A, Fragouli D (2016) Effect of the porous structure of polymer foams on the remediation of oil spills. J Phys D Appl Phys 49:145601

    ADS  Google Scholar 

  18. Tagliavia G, Porfiri M, Gupta N (2012) Influence of moisture absorption on flexural properties of syntactic foams. Compos B Eng 43:115–123

    CAS  Google Scholar 

  19. Siriruk A, Weitsman YJ, Penumadu D (2009) Polymeric foams and sandwich composites: material properties, environmental effects, and shear-lag modeling. Compos Sci Technol 69:814–820

    CAS  Google Scholar 

  20. Han X (2003) Continuous production of microcellular foams. The Ohio State University, Columbus

    Google Scholar 

  21. Avilés F, Aguilar-Montero M (2010) Moisture absorption in foam-cored composite sandwich structures. Polym Compos 31:714–722

    Google Scholar 

  22. Yu YJ, Hearon K, Wilson TS, Maitland DJ (2011) The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater Struct 20:1–6

    Google Scholar 

  23. Vlasveld D, Groenewold J, Bersee H, Picken SJ (2005) Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer 46:12567–12576

    CAS  Google Scholar 

  24. Baschek G, Hartwig G, Zahradnik F (1999) Effect of water absorption in polymers at low and high temperatures. Polymer 40:3433–3441

    CAS  Google Scholar 

  25. Ma J, Wang T (2018) Preparation and characterization of water-absorbing polyurethane foam composites with microsized sodium polyacrylate particles. J Appl Polym Sci 135:46702

    Google Scholar 

  26. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363

    CAS  Google Scholar 

  27. Chi J, Pérez RR, Gamboa CJ, González PI (2020) Transitory rheological test as a tool to monitor nano-clay dispersion and distribution in polypropylene–palygorskite composites. Polym Bull 77:3537–3562

    Google Scholar 

  28. ASTM D (2013) 5630–standard test method for ash content in plastics. Annual book of ASTM standards

  29. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Statist 23:193–212

    MathSciNet  Google Scholar 

  30. Mohebbi A, Mighri F, Ajji A, Rodrigue D (2015) Current issues and challenges in polypropylene foaming: a review. Cell Polym 34:299–338

    CAS  Google Scholar 

  31. ASTM D (2003) Standard test method for apparent density of rigid cellular plastics. ASTM International, West Conshohocken, PA, pp 1620–1623

    Google Scholar 

  32. Yasunaga K, Neff RA, Xhang XD, Macosko CW (1996) Study of cell opening in flexible polyurethane foam. J Cell Plast 32:427–448

    CAS  Google Scholar 

  33. ASTM A (1990) D570 standard test method for water absorption of plastics. astm d792 standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM D. 2240

  34. Shen CH, Springer GS (1976) Moisture absorption and desorption of composite materials. J Compos Mater 10:2–20

    Google Scholar 

  35. Kishimoto A (1972) Diffusion of vapours in organic coatings. Prog Org Coat 1:91–112

    CAS  Google Scholar 

  36. Van der Wel GK, Adan OCG (1999) Moisture in organic coatings—a review. Prog Org Coat 37:1–14

    Google Scholar 

  37. Berens A, Hopfenberg H (1978) Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 19:489–496

    CAS  Google Scholar 

  38. Sun YM (1996) Sorption/desorption properties of water vapour in poly (2-hydroxyethyl methacrylate): 2. Two-stage sorption models. Polymer 37:3921–3928

    CAS  Google Scholar 

  39. Roy S, Xu WX, Park SJ, Liechti KM (1999) Anomalous moisture diffusion in viscoelastic polymers: modeling and testing. J Appl Mech 67:391–396

    Google Scholar 

  40. Crank J (1979) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  41. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688

    Google Scholar 

  42. García-Romero E, Suárez M (2013) Sepiolite–palygorskite: textural study and genetic considerations. Appl Clay Sci 86:129–144

    Google Scholar 

  43. Huang HX, Wang JK, Sun XH (2008) Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends. J Cell Plast 44:69–85

    CAS  Google Scholar 

  44. Antunes M, Realinho V, Velasco JI (2010) Foaming behaviour, structure, and properties of polypropylene nanocomposites foams. J Nanomater 2010:1–11

    Google Scholar 

  45. Gupta N, Woldesenbet E (2003) Hygrothermal studies on syntactic foams and compressive strength determination. Compos Struct 61:311–320

    Google Scholar 

  46. Kord B (2014) Investigation on the long-term water absorption behavior and cell morphology of foamed wood–plastic nanocomposites. J Thermoplast Compos Mater 27:379–394

    Google Scholar 

  47. Soberanis GA (2015) Propiedades reológicas en fundido de materiales compuestos termoplásticos reforzados con nanoarcilla de paligorskita. In: Unidad de Materiales. Centro de Investigación Científica de Yucatán, A.C., México

  48. Soberanis GA, Gonzalez PI, Gordillo JL (2015) Influence of chemically treated palygorskite over the rheological behavior of polypropylene nanocomposites. Ingeniería, Investigación y Tecnología 16(4):491–501

    Google Scholar 

Download references

Acknowledgements

Authors appreciate the contribution of Santiago Duarte Aranda for scanning electron microscopy. RRPM acknowledges CONACYT (Mexico) for the scholarship granted during the postdoctoral stay for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Gonzalez-Chi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables 4 and 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Matu, R.R., Avilés, F. & Gonzalez-Chi, P.I. Water absorption kinetics of palygorskite nanoclay/polypropylene composite foams. Polym. Bull. 81, 4149–4174 (2024). https://doi.org/10.1007/s00289-023-04822-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04822-5

Keywords

Navigation