Skip to main content

Advertisement

Log in

Effect of post-processing on the mechanical properties of polymers printed by the fused filament fabrication method used as prosthodontic materials and dental biomaterials: a systematic review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Additive manufacturing offers several advantages such as accuracy, agility, and ability to customize parts with different geometries and complexities. However, this method has a disadvantage the poor adhesion between the layers resulting from the printing process, which leads to inferior mechanical properties of the materials printed by this technique. Thus, using strategies that improve these properties is beneficial for application in materials used in prostheses and biomaterials. However, there is still no consensus in the literature on the best method and how to perform it. The aim of this systematic review was to evaluate the post-processing methods used to improve the mechanical properties of polymers printed by the fused filament fabrication method. This systematic review is in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, and it was registered with the Open Science Framework (OSF) (https://osf.io/ckn6y). PubMed, Science Direct, EMBASE, and Scopus were the databases used in the search. Articles were selected by two independent reviewers according to the inclusion criteria. The risk of bias was analyzed by using the Joanna Briggs Institute adapted quasi-experimental study evaluation tool. The studies included in the present review point to the improvement in the mechanical properties of printed polymers when submitted to different types of post-processing. Post-processing was beneficial for polymers printed by the FFF technique. Thermal post-processing improves the mechanical properties of both semi-crystalline and amorphous polymers. The crystallinity and viscosity had a significant influence on mechanical properties. Chemical and mechanical post-processing improves surface roughness. However, the mechanical method does not apply to complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arjun P, Bidhun VK, Lenin UK, Amritha VP, Pazhamannil RV et al (2022) Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid. In press. https://doi.org/10.1016/j.matpr.2022.02.142

    Article  Google Scholar 

  2. Salmi M (2020) Additive manufacturing processes in medical applications. Materials (Basel) 2021(14):191. https://doi.org/10.3390/ma14010191

    Article  CAS  Google Scholar 

  3. Sulaiman TA (2020) Materials in digital dentistry-a review. J Esthet Restor Dent 32:171–181. https://doi.org/10.1111/jerd.12566

    Article  PubMed  Google Scholar 

  4. Oliveira TT, Reis AC (2019) Fabrication of dental implants by the additive manufacturing method: a systematic review. J Prosthet Dent 22:270–274. https://doi.org/10.1016/j.prosdent.2019.01.018

    Article  Google Scholar 

  5. Darling CJ, Curtis C, Sciacca BJ, Sarkar K, Smith DA (2022) Fused filament fabrication of complex anatomical phantoms with infill-tunable image contrast. Addit Manuf 52:102695. https://doi.org/10.1016/j.addma.2022.102695

    Article  Google Scholar 

  6. Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M et al (2021) 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 122:26–49. https://doi.org/10.1016/j.actbio.2020.12.044

    Article  CAS  PubMed  Google Scholar 

  7. Mu M, Ou C-Y, Wang J, Liu Y (2020) Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing. Addit Manuf. https://doi.org/10.1016/j.addma.2019.100972

    Article  Google Scholar 

  8. Dua R, Rashad Z, Spears J, Dunn G, Maxwell M (2021) Applications of 3D-printed PEEK via fused filament fabrication: a systematic review. Polymers (Basel) 13:4046. https://doi.org/10.3390/polym13224046

    Article  CAS  PubMed  Google Scholar 

  9. Javaid M, Haleem A (2019) Current status and applications of additive manufacturing in dentistry: a literature-based review. J Oral Biol Craniofac Res 9:179–185. https://doi.org/10.1016/j.jobcr.2019.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Revilla-Léon M, Özcan M (2019) Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 28:146–158. https://doi.org/10.1111/jopr.12801

    Article  PubMed  Google Scholar 

  11. Rekow ED (2020) Digital dentistry: the new state of the art - is it disruptive or destructive? Dent Mater 36:9–24. https://doi.org/10.1016/j.dental.2019.08.103

    Article  PubMed  Google Scholar 

  12. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  13. Rashid AA, Koç M (2021) Fused filament fabrication process: a review of numerical simulation techniques. Polymers (Basel) 13:3534. https://doi.org/10.3390/polym13203534

    Article  CAS  PubMed  Google Scholar 

  14. Amza CG, Zapciu A, Constantin G, Baciu F, Vasile MI (2021) Enhancing mechanical properties of polymer 3D printed parts. Polymers (Basel) 13:562. https://doi.org/10.3390/polym13040562

    Article  CAS  PubMed  Google Scholar 

  15. Alammar A, Kois JC, Revilla-León M, Att W (2022) Additive manufacturing technologies: current status and future perspectives. J Prosthodont 31:4–12. https://doi.org/10.1111/jopr.13477

    Article  PubMed  Google Scholar 

  16. Bhandari S, Lopez-Anido RA, Gardner DJ (2019) Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinyforced PETG and PLA composites via annealing. Addit Manuf 30:100922. https://doi.org/10.1016/j.addma.2019.100922

    Article  CAS  Google Scholar 

  17. Klüver E, Baltzer M, Langer A, Meyer M (2022) Additive manufacturing with thermoplastic collagen. Polymers (Basel) 14:974. https://doi.org/10.3390/polym14050974

    Article  CAS  PubMed  Google Scholar 

  18. Vidakis N, Petousis M, Velidakis E, Mountakis N, Fisher-Griffiths, et al (2022) Fused Filament Fabrication 3D printed polypropylene/alumina nanocomposites: effect of filler loading on the mechanical reinforcement. Polym Testing 109:107545. https://doi.org/10.1016/j.polymertesting.2022.107545

    Article  CAS  Google Scholar 

  19. Chen W, Zhang X, Tan D, Xu P, Yang B et al (2022) Improvement in mechanical properties of 3D-printed PEEK structure by nonsolvent vapor annealing. Macromol Rapid Commun. https://doi.org/10.1002/marc.202100874

    Article  PubMed  Google Scholar 

  20. Collinson DW, von Windheim N, Gall K, Brinson LC (2022) Direct evidence of interfacial crystallization preventing weld formation during fused filament fabrication of poly(ether ether ketone). Addit Manuf 51:102604. https://doi.org/10.1016/j.addma.2022.102604

    Article  CAS  Google Scholar 

  21. Ferreira I, Melo C, Neto R, Machado M (2020) Study of the annealing influence on the mechanical performance of PA12 and PA12 fibre reinforced FFF printed specimens. Rapid Prototyping J 26:1761–1770. https://doi.org/10.1108/RPJ-10-2019-0278

    Article  Google Scholar 

  22. Hart KR, Dunn RM, Wetzel ED (2020) Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing. Polymer 211:123091. https://doi.org/10.1016/j.polymer.2020.123091

    Article  CAS  Google Scholar 

  23. Matichescu A, Ardelean LC, Rusu L-C, Craciun D, Bratu EA, Babucea M et al (2020) Advanced biomaterials and techniques for oral tissue engineering and regeneration-a review. Materials (Basel) 13:5303. https://doi.org/10.3390/ma13225303

    Article  CAS  PubMed  Google Scholar 

  24. Pazhamannil RV, Krishnan N, Govindan P, Edacherian A (2021) Investigations into the effect of thermal annealing on fused filament fabrication process. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2021.1946753

    Article  Google Scholar 

  25. Puerta APV, López-Castro FD, López AO, Vidal SRF (2021) On improving the surface finish of 3D printing polylactic acid parts by corundum blasting. Rapid Prototyping J 27:1398–1407. https://doi.org/10.1108/RPJ-05-2021-0105

    Article  Google Scholar 

  26. Rane R, Kulkarni A, Prajati H, Taylor R, Jain A et al (2020) Post-process effects of isothermal annealing and initially applied static uniaxial loading on the ultimate tensile strength of fused filament fabrication parts. Materials (Basel) 13:352. https://doi.org/10.3390/ma13020352

    Article  CAS  PubMed  Google Scholar 

  27. Singh S, Singh M, Prakash C, Gupta MK, Mia M et al (2019) Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int J Adv Manuf Technol 102:1521–1536. https://doi.org/10.1007/s00170-018-03276-8

    Article  Google Scholar 

  28. Szust A, Adamski G (2022) Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints. Eng Fail Anal 132:105932. https://doi.org/10.1016/j.engfailanal.2021.105932

    Article  CAS  Google Scholar 

  29. Arunprasath K, Vijayakumar M, Ramarao M, Arul TG, Pauldoss P, Selwin M et al (2021) Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). Mater Today Proceed. https://doi.org/10.1016/j.matpr.2021.09.113

    Article  Google Scholar 

  30. Bohl MA, Morgan CD, Mooney MA, Repp GJ, Lehrman JN, Kelly BP et al (2019) Biomechanical Testing of a 3D-printed L5 Vertebral Body Model. Cureus. 11:e3893. https://doi.org/10.7759/cureus.3893

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mazzanti V, Malagutti L, Mollica F (2019) 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers (Basel) 11:1094

    Article  PubMed  Google Scholar 

  32. Singh S, Singh R (2016) Fused deposition modelling based rapid patterns for investment casting applications: a review. Rapid Prototyping J 22:123–143. https://doi.org/10.1108/RPJ-02-2014-0017

    Article  Google Scholar 

  33. Clifton W, Nottmeier E, Damon A, Dove C, Chen SG, Pichelman M (2019) A feasibility study for the production of three-dimensional-printed spine models using simultaneously extruded thermoplastic polymers. Cureus. 11:e4440. https://doi.org/10.7759/cureus.4440

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352. https://doi.org/10.1016/j.rser.2017.05.143

    Article  CAS  Google Scholar 

  35. Molinero-Mourelle P, Canals S, Gómez-Polo M, Solá-Ruiz MF, Highsmith JDR, Viñuela AC (2018) Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations. Int J Prosthodont 31:349–350. https://doi.org/10.11607/ijp.5709

    Article  PubMed  Google Scholar 

  36. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M (2020) The use of PEEK in digital prosthodontics: a narrative review. BMC Oral Health 20:217. https://doi.org/10.1186/s12903-020-01202-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruban SR, Jannet S, Raja R, Kakur N, Arumugaprabu V (2022) Enhancing Mechanical Behavior of As-Built and Annealed Polyethylene Terephthalate Glycol (PETG) Fabricated With Fused Filament Fabrication by Varying Infill Densities. https://doi.org/10.1016/B978-0-12-820352-1.00241-8

  38. Worch JC, Weems AC, Yu J, Arno MC, Wilks TR et al (2020) Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nat Commun 11:3250. https://doi.org/10.1038/s41467-020-16945-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winnacker M (2017) Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater Sci 5:1230–1235. https://doi.org/10.1039/C7BM00160F

    Article  CAS  PubMed  Google Scholar 

  40. Winnacker M, Beringer AJG, Gronauer TF, Güngör HH, Reinschlüssel L et al (2019) Polyamide/PEG blends as biocompatible biomaterials for the convenient regulation of cell adhesion and growth. Macromol Rapid Commun 40:e1900091. https://doi.org/10.1002/marc.201900091

    Article  CAS  PubMed  Google Scholar 

  41. Alp G, Johnston WM, Yilmaz B (2019) Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J Prosthet Dent 121:347–352

    Article  CAS  PubMed  Google Scholar 

  42. Batak B, Çakmak G, Johnston WM, Yilmaz B (2021) Surface roughness of high-performance polymers used for fixed implant-supported prostheses. J Prosthet Dent 126:254.e1-254.e6. https://doi.org/10.1016/j.prosdent.2020.11.029

    Article  CAS  PubMed  Google Scholar 

  43. Rohr N, Bertschinger N, Fischer J, Filippi A, Zitzmann NU (2020) Influence of material and surface roughness of resin composite cements on fibroblast behavior. Oper Dent 45:528–536. https://doi.org/10.2341/19-113-L

    Article  CAS  PubMed  Google Scholar 

  44. Mei L, Busscher HJ, van der Mei HC, Ren Y (2011) Influence of surface roughness on streptococcal adhesion forces to composite resins Dent Mater 27:770–778. https://doi.org/10.1016/j.dental.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  45. Vidakis N, Vairis A, Petousis M, Savvakis K, Kechagias J (2016) Fused deposition modelling parts tensile strength characterisation. Acad J Manuf Eng 14:87–94

    Google Scholar 

  46. Bankupalli N, Rao DS, Krishna TSV (2021) Effect of process parameters and butadiene content on friction and wear behaviour of ABS components. Mater Today Proceed 41:416–421. https://doi.org/10.1016/j.matpr.2020.09.808

    Article  CAS  Google Scholar 

  47. Fontana L, Minetola P, Iuliano L, Rifuggiato S, Khandpur MS et al (2022) An investigation of the influence of 3d printing parameters on the tensile strength of PLA material. Mater Today Proceed. https://doi.org/10.1016/j.matpr.2022.02.078

    Article  Google Scholar 

  48. Kaur G, Singari RM, Kumar H (2022) A review of fused filament fabrication (FFF): process parameters and their impact on the tribological behavior of polymers (ABS). Mater Today Proceed 51:854–860. https://doi.org/10.1016/j.matpr.2021.06.274

    Article  CAS  Google Scholar 

  49. Kumar MA, Khan MS, Mishra SB (2020) Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Mater Today Proceed 27:975–983. https://doi.org/10.1016/j.matpr.2020.01.291

    Article  CAS  Google Scholar 

  50. Wang Y, Müller W-D, Rumjahn A, Schmidt F, Schwitalla AD (2021) Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J Mech Behav Biomed Mater 115:104250. https://doi.org/10.1016/j.jmbbm.2020.104250

    Article  CAS  PubMed  Google Scholar 

  51. Singh J, Singh CR (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyping J 23:495–513. https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  52. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L (2017) Chapter 3: Systematic reviews of effectiveness. In: Aromataris E, Munn Z (eds) Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs Institute, Adelaide. https://doi.org/10.46658/JBIMES-20-04

    Chapter  Google Scholar 

  54. Singh R, Davim JP (2019) Additive manufacturing applications and innovations. CRC Press, Boca Raton. https://doi.org/10.1201/b22179

    Book  Google Scholar 

  55. Pou J, Riveiro A, Davim P (2021) Additive Manufacturing. Elsevier, Amsterdam. https://doi.org/10.1016/C2018-0-00910-X

    Book  Google Scholar 

  56. Davim JP (2019) Mechanical Behavior of Biomaterials Woodhead Publishing Series in Biomaterials. Elsevier, Amsterdam. https://doi.org/10.1016/C2016-0-04173-6

    Book  Google Scholar 

  57. Kurdi A, Alhazmi N, Alhazmi H, Tabbakh T (2020) Practice of simulation and life cycle assessment in tribology –a review. Materials 13:3489. https://doi.org/10.3390/ma13163489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davim, JP (2014) Biomedical Composites – Materials, Manufacturing and Engineering, De Gruyter

  59. Yoon H-I, Jeon M-J, Kim H-L, Kim D-G, Han J-S (2018) Spatial variation of bone biomechanical properties around a dental implant using nanoindentation: a case study. J Mech Behav Biomed Mater 79:168–172. https://doi.org/10.1016/j.jmbbm.2017.12.027

    Article  PubMed  Google Scholar 

  60. Davim JP (2013) Biomaterials and medical tribology Woodhead Publishing series in biomaterials. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-85709-017-1.50011-9

    Book  Google Scholar 

  61. Jiang D, Smith DR (2017) Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. Addit Manuf 18:84–94. https://doi.org/10.1016/j.addma.2017.08.006

    Article  CAS  Google Scholar 

  62. Rezaei F, Yunus R, Ibrahim NA (2009) Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 30:260–263. https://doi.org/10.1016/j.matdes.2008.05.005

    Article  CAS  Google Scholar 

  63. Prajapati H, Chalise D, Ravoori D, Taylor RM, Jain A (2019) Improvement in build-direction thermal conductivity in extrusion-based polymer additive manufacturing through thermal annealing. Addit Manuf 26:242–249. https://doi.org/10.1016/j.addma.2019.01.004

    Article  CAS  Google Scholar 

  64. Ko YS, Herrmann D, Tolar O, Elspass WJ, Brändli C (2019) Improving the filament weld-strength of fused filament fabrication products through improved interdiffusion. Addit Manuf 29:100815. https://doi.org/10.1016/j.addma.2019.100815

    Article  CAS  Google Scholar 

  65. Seppala JE, Han KEH, Hillgartner KE, Davis CS, Migler KB (2017) Weld formation during material extrusion additive manufacturing. Soft Matter 13:6761–6769. https://doi.org/10.1039/c7sm00950j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ravi AK, Deshpande A, Hsu KHJ (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. Manuf Process 24:179. https://doi.org/10.1016/j.jmapro.2016.08.007

    Article  Google Scholar 

  67. Yang Y, Wang T, Wang S, Cong X, Zhang S et al (2020) Strong interface construction of carbon fiber–reinforced PEEK composites: an efficient method for modifying carbon fiber with crystalline PEEK. Macromol Rapid Commun 41:2000001. https://doi.org/10.1002/marc.202000001

    Article  CAS  Google Scholar 

  68. Garg A, Bhattacharya A, Batish A (2017) Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89:2175–2191. https://doi.org/10.1007/s00170-016-9257-1

    Article  Google Scholar 

  69. Aguirre BC, Chen J-H, Kontogiorgos ED, Murchison DF, Nagy WW (2020) Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J Prosthet Dent 123:641–646. https://doi.org/10.1016/j.prosdent.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  70. Holanda KAB, Caldas RA, Amaral M, Concilio LRS, Vitti RP (2021) Biomechanical evaluation of anterior implants associated with titanium and zirconia abutments and monotype zirconia implants. J Prosthodont Res 65:73–77. https://doi.org/10.2186/jpr.JPOR_2019_527

    Article  Google Scholar 

  71. Shahabi M, Fazel SM, Rangrazi A (2021) Incorporation of chitosan nanoparticles into a cold-cure ortho-dontic acrylic resin: effects on mechanical properties. Biomimetics (Basel) 6:7. https://doi.org/10.3390/biomimetics6010007

    Article  CAS  PubMed  Google Scholar 

  72. Zhu C, Zhang F, Jiao T (2017) Compressive resistances and failure modes of abutments with different transgingival heights and types on internal conical connected implants. Implant Dent 26:682–689. https://doi.org/10.1097/ID.0000000000000658

    Article  PubMed  Google Scholar 

  73. Ge T, Robbins MO, Perahia D, Grest GS (2014) Healing of polymer interfaces: interfacial dynamics, entanglements, and strength. Phys Rev E: Stat Nonlin Soft Matter Phys 90:012602. https://doi.org/10.1103/PhysRevE.90.012602

    Article  CAS  PubMed  Google Scholar 

  74. Bruijn DAC, Gómez-Gras G, Pérez MA (2021) On the effect upon the surface finish and mechanical performance of ball burnishing process on fused filament fabricated parts. Addit Manuf 46:102133. https://doi.org/10.1016/j.addma.2021.102133

    Article  CAS  Google Scholar 

  75. Swirad S, Wdowik R (2019) Determining the effect of ball burnishing parameters on surface roughness using the Taguchi method. Proced Manuf 34:287–292. https://doi.org/10.1016/j.promfg.2019.06.152

    Article  Google Scholar 

  76. Low KO, Wong KJ (2011) Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribol Int 44:144–153. https://doi.org/10.1016/j.triboint.2010.10.005

    Article  CAS  Google Scholar 

  77. Hurst SM, Farshchian B, Choi J, Kim J, Park S (2012) A universally applicable method for fabricating superhydrophobic polymer surfaces. Colloid Surface A 407:85–90. https://doi.org/10.1016/j.colsurfa.2012.05.012

    Article  CAS  Google Scholar 

  78. Roach DJ, Roberts C, Wong J, Kuang X, Kovitz J, Zhang Q et al (2020) Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics. Addit Manuf 36:101544. https://doi.org/10.1016/j.addma.2020.101544

    Article  CAS  Google Scholar 

  79. Rajan AJ, Sugavaneswaran M, Prashanthi B, Deshmukh S, Jose S (2020) Influence of vapour smoothing process parameters on fused deposition modelling parts surface roughness at different build orientation. Mater Today Proced 22:2772–2778. https://doi.org/10.1016/j.matpr.2020.03.408

    Article  CAS  Google Scholar 

  80. Gupta AK, Krishnanand TM (2022) The effect of process parameters in material extrusion processes on the part surface quality: a review. Mater Today Proced 50:1234–1242. https://doi.org/10.1016/j.matpr.2021.08.110

    Article  CAS  Google Scholar 

  81. Hashmi AW, Mali HS, Meena A (2021) Improving the surface characteristics of additively manufactured parts: a review. Mater Today Proced. https://doi.org/10.1016/j.matpr.2021.04.223

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa C. dos Reis.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, M.R., dos Reis, A.C. Effect of post-processing on the mechanical properties of polymers printed by the fused filament fabrication method used as prosthodontic materials and dental biomaterials: a systematic review. Polym. Bull. 81, 2001–2021 (2024). https://doi.org/10.1007/s00289-023-04816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04816-3

Navigation