Skip to main content

Advertisement

Log in

Green synthesized guar plant composites for wastewater remediation: a comprehensive review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The human population has massively increased throughout the world. This has created various serious challenges, especially water pollution issues. Heavy metals, dyes, textile industries, microorganisms, organic and chemical pollutants can be included as main sources of water pollution. There are various methods for contaminant disposal. In this regard, the adsorption technique can be considered the most common method. In this technique, alum and polyaluminum chloride are widely used chemicals. However, they have harmful side effects on the environment, due to their chemical nature. One of the best solutions to overcome this issue is the use of natural materials and polysaccharides, which are abundant materials, biocompatible, biodegradable, non-toxic and functional groups with low processing costs. These materials include Guar Gum (GG), derivatives such as Al2O3 (GG-AO), GG nanocomposites, acrylic gum-based hydrogels, GG-hydrogel, gum nano-hydrogels, magnetic nano-GG, agaric GG, itaconic (Aldehyde GG), Galacyl-Hydrazine modified GG (GG-GH), depolymerized GG (oxidized GG), Guar-Graft Poly(Methylacrylate) (GG-g PMA), poly(acrylamide) GG-silica nanocomposites, GG Sulphonic Acid (g-GG/SiO2), GG Nitrilotriacetic Acid (GNTA) resin, etc. Different factors such as pH, adsorbent amount and contact retention time have significant impacts on adsorbent efficiency. Various studies have reported that pH values of 4–8 resulted in efficiency higher than 90%. The concentration of the adsorbent and the contact time are varied, depending on the type of the considered derivative. The use of GG and its derivatives can be an effective strategy to greatly reduce the cost of water treatment. In addition to being cost-effective, the proposed strategy is biocompatible and eco-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

GG:

Guar Gum

AGG:

Aldehyde Guar Gum

GG-GH:

Guar Gum-Glycyl Hydrazine

GNTA:

Guar Gum Nitrilotriacetic Acid

GSA:

Guar Gum Sulphonic Acid

g-GG/SiO2 :

Guar Gum-graft-poly(acrylamide)/silica

GG-g PMA:

guar-graft poly(methylacrylate)

POPs:

Persistent Organic Pollutants

PAC:

Poly-Aluminum Chloride

GRAS:

Generally Recognized As Safe

GG-g-poly(Am-co-AA):

Guar Gum ground poly(acrylic acid-co-acrylamide)

CGG:

Cationic Guar Gum

IA:

Itaconic Acid

GG-g-IA:

Guar Gum ground Itaconic Acid

BOD:

Biochemical Oxygen Demand

MOF:

Metal Organic Materials

COFs:

Covalent Organic Frameworks

CMPs:

Conjugated Microporous Polymers

HCPs:

Hyper-Crosslinked Polymers

HMPs:

Hybrid Microporous Polymers

GG/AO:

Guar Gum/Al2O3

ColGG:

Hydrogels from collagen and Guar Gum

cat-GG/SiO2 :

Cationically Guar Gum/SiO2

N,N-MBAAm:

N,N'-Methylenebisacrylamide

TGA:

Thermal Gravimetric Analysis

CR:

Congo Red

RB 4:

Reactive Blue 4

MG:

Malachite Green

PIE:

Paint Industry effulent

AgNPs:

Silver noparticles

MB:

Methylene Blue

GG-cl:

Guar Gum-cl

CPs:

Conducting Polymers

PANI:

Polyaniline

E. coli:

Escherichia coli

S. aureus:

Staphylococcus aureus

GG-crosslinked-SY NHS:

Guar Gum-crosslinked-Soya lecithin Nanohydrogel Sheets

TOCN/CGG:

TEMPO-Oxidized Cellulose Nanofibers (TOCN)/Cationic Guar Gum

semi-IPN:

Semi-Interpenetrating Networks

References

  1. Abiola ON (2019) Polymers for coagulation and flocculation in water treatment. Polymeric materials for clean water. Springer, Berlin, pp 77–92

    Google Scholar 

  2. Agathokleous E (2022) European Union’s imminent ban on glyphosate: Hormesis should be considered in new chemical screening and selection. J For Res 33:1103–1107. https://doi.org/10.1007/s11676-022-01474-5

    Article  CAS  Google Scholar 

  3. Ahmad R, Mirza A (2018) Synthesis of Guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. J Mol Liq 249:805–814. https://doi.org/10.1016/j.molliq.2017.11.082

    Article  CAS  Google Scholar 

  4. Ahmed SF et al (2021) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater Elsevier 416:125912

    CAS  Google Scholar 

  5. Alguacil FJ, López FA (2020) Adsorption processing for the removal of toxic Hg (II) from liquid effluents: advances in the 2019 year. Metals 10(3):412

    CAS  Google Scholar 

  6. Ali M et al (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of reactive blue 4 dye. Chemosphere 202:198–207

    CAS  PubMed  Google Scholar 

  7. Ali ME et al (2020) Nanoadsorbents for wastewater treatment: next generation biotechnological solution. Int J Environ Sci Technol Springer 17(9):4095–4132

    CAS  Google Scholar 

  8. Ali M, Husain Q (2018) Guar gum blended alginate/agarose hydrogel as a promising support for the entrapment of peroxidase: stability and reusability studies for the treatment of textile effluent. Int J Biol Macromol 116:463–471. https://doi.org/10.1016/j.ijbiomac.2018.05.037

    Article  CAS  PubMed  Google Scholar 

  9. Amini S et al (2012) Mathematical modelling of a hydrocyclone for the down-hole oil–water separation (DOWS). Chem Eng Res Des 90(12):2186–2195

    CAS  Google Scholar 

  10. Anandha Kumar S et al (2021) Guar gum-stabilized soil: a clean, sustainable and economic alternative liner material for landfills. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-021-02032-z

    Article  Google Scholar 

  11. Antov MG, Šćiban MB, Prodanović JM (2012) Evaluation of the efficiency of natural coagulant obtained by ultrafiltration of common bean seed extract in water turbidity removal. Ecol Eng Elsevier 49:48–52

    Google Scholar 

  12. Asharuddin SM et al (2021) Recent advancement in starch modification and its application as water treatment agent. Environ Technol Innov Elsevier 23:101637

    Google Scholar 

  13. Awuchi CG et al (2020) Industrial waste management, treatment, and health issues: wastewater, solid, and electronic wastes. Eur Acad Res 8(2):1081–1119

    Google Scholar 

  14. Bădescu IS, Bulgariu D, Bulgariu L (2017) Alternative utilization of algal biomass (Ulva sp.) loaded with Zn (II) ions for improving of soil quality. J Appl Phycol 29(2):1069–1079

    Google Scholar 

  15. Bal T et al (2020) In vitro evaluations of free radical assisted microwave irradiated polyacrylamide grafted cashew gum (CG) biocompatible graft copolymer (CG-g-PAM) as effective polymeric scaffold. J Drug Deliv Sci Technol 56:101572

    CAS  Google Scholar 

  16. Borgå K et al (2022) The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Processes & Impacts. Royal Society of Chemistry, Environmental Science

    Google Scholar 

  17. Caldera-Villalobos M et al (2021) Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. J Polym Res. https://doi.org/10.1007/s10965-021-02767-9

    Article  Google Scholar 

  18. Casadidio C et al (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs MDPI 17(6):369

    CAS  Google Scholar 

  19. Chauhan, K., Chauhan, G. S. and Ahn, J. H. (2009) ‘Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents. Bioresour Technol. 20090401st edn, 100(14), pp. 3599–3603. doi: https://doi.org/10.1016/j.biortech.2009.03.007

  20. Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307(2):309–316

    CAS  PubMed  Google Scholar 

  21. Chen Q et al (2018) Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng 26:289–300

    Google Scholar 

  22. Chen W-L et al (2018) Locust bean gum galactomannan hydrolyzed by thermostable β-d-mannanase may reduce the secretion of pro-inflammatory factors and the release of granule constituents. Int J Biol Macromol 114:181–186. https://doi.org/10.1016/j.ijbiomac.2018.03.097

    Article  CAS  PubMed  Google Scholar 

  23. Chen X et al (2021) ‘Microencapsulation of Cyclocarya paliurus (Batal) Iljinskaja extracts: a promising technique to protect phenolic compounds and antioxidant capacities. Foods 10(12):58. https://doi.org/10.3390/foods10122910

    Article  CAS  Google Scholar 

  24. Cheng C et al (2018) Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01047-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng SY et al (2020) Sustainable landfill leachate treatment: Optimize use of guar gum as natural coagulant and floc characterization. Environ Res 188:109737. https://doi.org/10.1016/j.envres.2020.109737

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhary P et al (2020) Role of industries in water scarcity and its adverse effects on environment and human health. Environmental concerns and sustainable development. Springer, Berlin, pp 235–256

    Google Scholar 

  27. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    CAS  Google Scholar 

  28. Dai L et al (2017) Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohyd Polym 169:9–15. https://doi.org/10.1016/j.carbpol.2017.03.096

    Article  CAS  Google Scholar 

  29. Dai L et al (2019) Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose 26(11):6891–6901

    CAS  Google Scholar 

  30. Dai L, Wang Y et al (2020) A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydrate Polymers 244:116472. https://doi.org/10.1016/j.carbpol.2020.116472

    Article  CAS  PubMed  Google Scholar 

  31. Dai L, Cheng T et al (2020) A versatile TOCN/CGG self-assembling hydrogel for integrated wastewater treatment. Cellulose 27(2):915–925. https://doi.org/10.1007/s10570-019-02834-x

    Article  CAS  Google Scholar 

  32. Das A et al (2020) ‘Guar gum cinnamate ouzo nanoparticles for bacterial contact killing in water environment. Carbohydr Res 491:107983. https://doi.org/10.1016/j.carres.2020.107983

    Article  CAS  PubMed  Google Scholar 

  33. Deng M et al (2018) ‘Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China. Environ Pollut 236:137–145

    CAS  PubMed  Google Scholar 

  34. Dinari M et al (2020) Green cross-linked bionanocomposite of magnetic layered double hydroxide/guar gum polymer as an efficient adsorbent of Cr (VI) from aqueous solution. Carbohyd Polym 236:116070

    CAS  Google Scholar 

  35. Du D et al (2019) ‘Silver nanowire ink for flexible circuit on textiles. Micromachines 10(1):42. https://doi.org/10.3390/mi10010042

    Article  PubMed  PubMed Central  Google Scholar 

  36. Du J, Singh H, Yi T-H (2016) Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst Eng Germany 39(12):1923–1931. https://doi.org/10.1007/s00449-016-1666-x

    Article  CAS  Google Scholar 

  37. Duan C et al (2020) Facile synthesis of Ag NPs@ MIL-100 (Fe)/guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydr Polym Elsevier 230:115642

    CAS  Google Scholar 

  38. El-Aouni N, Hsissou R, El Azzaoui J, El Bouchti M, Elbachiri A, Elharfi A, Rafik M (2021) One-pot synthesis of trifunctional epoxy resin and its nanocomposite: investigation of thermal and rheological properties. Biointerface Res Appl Chem 11:12403–12413

    CAS  Google Scholar 

  39. Fan S et al (2008) Two-step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties. J Mater Sci 43(17):5898–5904. https://doi.org/10.1007/s10853-008-2855-z

    Article  CAS  Google Scholar 

  40. Gihar S, Kumar D, Kumar P (2021) Facile synthesis of novel pH-sensitive grafted guar gum for effective removal of mercury (II) ions from aqueous solution. Carbohydr Polym Technol Appl 2:100110. https://doi.org/10.1016/j.carpta.2021.100110

    Article  CAS  Google Scholar 

  41. Gregory J, Barany S (2011) ‘Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci Elsevier 169(1):1–12

    CAS  Google Scholar 

  42. Gupta NR et al (2015) Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydrate Polym 117:331–338. https://doi.org/10.1016/j.carbpol.2014.09.073

    Article  CAS  Google Scholar 

  43. Gupta S et al (2020) ‘Surface Morphology and Physicochemical Characterization of Thermostable Moringa Gum: A Potential Pharmaceutical Excipient. ACS omega 5(45):29189–29198. https://doi.org/10.1021/acsomega.0c03966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hassan M et al (2020) Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Sci Total Environ Elsevier 702:134893

    CAS  Google Scholar 

  45. Hassani A et al (2015) Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies. Environ Technol 36(24):3125–3135

    CAS  PubMed  Google Scholar 

  46. Hosny R et al (2016) Treatment of the oily produced water (OPW) using coagulant mixtures. Egypt J Pet 25(3):391–396

    Google Scholar 

  47. Hsissou R (2021) Review on epoxy polymers and its composites as apotential anticorrosive coatings for carbon steel in 3.5% NaCl solution: computational approaches. J Mol Liq 336:116307

    CAS  Google Scholar 

  48. Hsissou R, Abbout S, Benhiba F, Seghiri R, Safi Z, Kaya S et al (2021) Insight into the corrosion inhibition of novel macromolecular epoxy resin as highly efficient inhibitor for carbon steel in acidic mediums: synthesis, characterization, electrochemical techniques, AFM/UV–Visible and computational investigations. J Mol Liq 337:116492

    CAS  Google Scholar 

  49. Hsissou R, Abbout S, Seghiri R, Rehiou M, Berisha A et al (2020) Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: computational studies (DFT, MC and MD simulations). J Market Res 9:2691–2703

    CAS  Google Scholar 

  50. Hsissou R, Benhiba F, Abbout S, Dagdag O et al (2020) Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations. Inorg Chem Commun 115:107858

    CAS  Google Scholar 

  51. Hsissou R, Dagdag O, Berradi M, Bouchti EL, M., et al (2019) Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Appl Sci 1:1–9

    CAS  Google Scholar 

  52. Hsissou R, Bouchti EL, M. & Elharfi, A. (2017) Elaboration and viscosimetric, viscoelastic and rheological studies of a new hexafunctional polyepoxide polymer: hexaglycidyl ethylene of methylene dianiline. J Mater Environ Sci 8:4349–4361

    CAS  Google Scholar 

  53. Hu R et al (2020) Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl Mater Interfaces 12(27):30770–30778

    CAS  PubMed  Google Scholar 

  54. Hui Y et al (2019) Scalable production of hierarchical N-doping porous carbon@ Cu composite fiber based on rapid gelling strategy for high-performance supercapacitor. J Alloy Compd 792:976–982

    CAS  Google Scholar 

  55. Iqbal M (2016) Vicia faba bioassay for environmental toxicity monitoring: a review. Chemosphere 144:785–802

    CAS  PubMed  Google Scholar 

  56. Issaka S, Ashraf MA (2017) Impact of soil erosion and degradation on water quality: a review. Geol Ecol Landsc 1(1):1–11

    Google Scholar 

  57. Jakóbik-Kolon A et al (2019) Long term and large-scale continuous studies on zinc(II) sorption and desorption on hybrid pectin-guar gum biosorbent. Polymers 11(1):96. https://doi.org/10.3390/polym11010096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jalili M, Abbasi F, Dalvand A, Fatahi Bafghi H, Ebrahimi AA (2023) The ozonation effect on flocculation and polymer consumption reduction in the hybrid treatment of Iran Central iron ore companies’ effluent: a cost–benefit study. Appl Water Sci 13:51

    CAS  Google Scholar 

  59. Jiang H, Hettiararchchy NS, Horax R (2019) Quality and estimated glycemic profile of baked protein-enriched corn chips. J Food Sci Technol 56(6):2855–2862. https://doi.org/10.1007/s13197-019-03717-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kabir SF et al (2022) Occurrence, distribution, and structure of natural polysaccharides. Radiation-processed polysaccharides. Elsevier, New York, pp 1–27

    Google Scholar 

  61. Kaczmarek B, Nadolna K, Owczarek A (2020) The physical and chemical properties of hydrogels based on natural polymers. Hydrogels based on natural polymers. Elsevier, NewYork, pp 151–172

    Google Scholar 

  62. Ke J et al (2017) Facile assembly of Bi2O3/Bi2S3/MoS2 np heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl Catal B 200:47–55

    CAS  Google Scholar 

  63. Khan MS et al (2017) Graphene oxide@gold nanorods for chemo-photothermal treatment and controlled release of doxorubicin in mice Tumor’, Colloids and surfaces. B. Biointerfaces 160:543–552. https://doi.org/10.1016/j.colsurfb.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  64. Kumar A et al (2017) Synthesis of xanthan gum graft copolymer and its application for controlled release of highly water soluble Levofloxacin drug in aqueous medium. Carbohydr Polym 171:211–219. https://doi.org/10.1016/j.carbpol.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  65. Kumar A, Klibanov AM (2017) Viscosity-reducing bulky-salt excipients prevent gelation of protein, but not carbohydrate, solutions. Appl Biochem Biotechnol 182(4):1491–1496. https://doi.org/10.1007/s12010-017-2413-8

    Article  CAS  PubMed  Google Scholar 

  66. Kumar B et al (2019) ‘Guar gum modified upconversion nanocomposites for colorectal cancer treatment through enzyme-responsive drug release and NIR-triggered photodynamic therapy. Nanotechnol 30(31):315102. https://doi.org/10.1088/1361-6528/ab116e

    Article  CAS  Google Scholar 

  67. Kumar V et al (2019) Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere Elsevier 236:124364

    CAS  Google Scholar 

  68. Lee T-A et al (2018) Electrofluidic circuit-based microfluidic viscometer for Analysis of Newtonian and Non-Newtonian liquids under different temperatures. Anal Chem 90(3):2317–2325. https://doi.org/10.1021/acs.analchem.7b04779

    Article  CAS  PubMed  Google Scholar 

  69. Liu T et al (2014) Ultraviolet-crosslinked hydrogel sustained-release hydrophobic antibiotics with long-term antibacterial activity and limited cytotoxicity. J Appl Polym Sci 131(13):1–8. https://doi.org/10.1002/app.40438

    Article  CAS  Google Scholar 

  70. Liu X et al (2018) Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem 239:1064–1074. https://doi.org/10.1016/j.foodchem.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  71. Luo X et al (2016) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem Eng 4(7):3960–3969

    CAS  Google Scholar 

  72. Mahmoudabadi TZ, Talebi P, Jalili M (2019) Removing disperse red 60 and reactive blue 19 dyes removal by using Alcea rosea root mucilage as a natural coagulant. AMB Express 9:1–8

    CAS  Google Scholar 

  73. Mahto A, Mishra S (2021) The removal of textile industrial Dye-RB-19 using Guar gum-based adsorbent with thermodynamic and kinetic evaluation parameters. Polym Bull. https://doi.org/10.1007/s00289-021-03663-4

    Article  Google Scholar 

  74. Maroušek J et al (2019) ‘Ferrous sludge from water clarification: changes in waste management practices advisable. J Clean Prod Elsevier 218:459–464

    Google Scholar 

  75. Martinez M et al (2006) Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. J Hazard Mater 133(1–3):203–211

    CAS  PubMed  Google Scholar 

  76. Mazari L, Abdessemed D, Szymczyk A (2018) ‘Evaluating reuse of alum sludge as coagulant for tertiary wastewater treatment. J Eng Am Soc Civil Eng 144(12):4018119

    Google Scholar 

  77. Mitiku AA (2020) A review on water pollution: causes, effects and treatment methods. Int J Pharm Sci Rev Res 60(2):94–101

    CAS  Google Scholar 

  78. Mukherjee S et al (2018) Application of guar gum for the removal of dissolved lead from wastewater. Ind Crops Prod 111:261–269. https://doi.org/10.1016/j.indcrop.2017.10.022

    Article  CAS  Google Scholar 

  79. Mukherjee T et al (2019) ‘Making glue from seeds and gums: Working with plant-based polymers to introduce students to plant biochemistry. Biochem Mol Biol Educ 47(4):468–475. https://doi.org/10.1002/bmb.21252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mukwaya V, Wang C, Dou H (2019) Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. Polym Int 68(3):306–319

    CAS  Google Scholar 

  81. Muthuraman G, Ramu AG, Moon IS (2016) Gaseous trichloroethylene removal using an electrochemically generated homogeneous low-valent ligand-free Co (I) electrocatalyst by electro-scrubbing. J Hazard Mater 311:210–217

    CAS  PubMed  Google Scholar 

  82. Nawarkar CJ, Salkar VD (2019) ‘Solar powered electrocoagulation system for municipal wastewater treatment. Fuel Elsevier 237:222–226

    CAS  Google Scholar 

  83. Ni’am, A. C. et al (2020) Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane. Chem Eng Process-Process Intensif 148:107831

    Google Scholar 

  84. Nikzad S, Amooey AA, Alinejad-Mir A (2019) Adsorption of diazinon from aqueous solutions by magnetic guar gum-montmorillonite. Chem Data Collect. https://doi.org/10.1016/j.cdc.2019.100187

    Article  Google Scholar 

  85. Okuda T, Ali EN (2019) Application of Moringa oleifera plant in water treatment. Water and wastewater treatment technologies. Springer, Berlin, pp 63–79

    Google Scholar 

  86. Osifo PO et al (2008) The influence of the degree of cross-linking on the adsorption properties of chitosan beads. Biores Technol 99(15):7377–7382

    CAS  Google Scholar 

  87. Paixão MVG, de Balaban RC (2018) Application of guar gum in brine clarification and oily water treatment. Int J Biol Macromol 108:119–126. https://doi.org/10.1016/j.ijbiomac.2017.11.166

    Article  CAS  PubMed  Google Scholar 

  88. Pal S et al (2015) Modified guar gum/SiO2: development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ Sci Water Res Technol 1(1):84–95. https://doi.org/10.1039/c4ew00023d

    Article  CAS  Google Scholar 

  89. Pan X et al (2019) Mussel-inspired nanocomposite hydrogel-based electrodes with reusable and injectable properties for human electrophysiological signals detection. ACS Sustain Chem Eng 7(8):7918–7925

    CAS  Google Scholar 

  90. Patel H, Yadav VK, Yadav KK, Choudhary N, Kalasariya H, Alam MM, Gacem A, Amanullah M, Ibrahium HA, Park J-W et al (2022) A recent and systemic approach towards microbial biodegradation of dyes from textile industries. Water 14:3163. https://doi.org/10.3390/w14193163

    Article  CAS  Google Scholar 

  91. Pandey VS et al (2014) Studies on graft copolymerization of gellan gum with N, N-dimethylacrylamide by the redox system. Int J Biol Macromol 70:108–115. https://doi.org/10.1016/j.ijbiomac.2014.06.043

    Article  CAS  PubMed  Google Scholar 

  92. Pariatamby A, Kee YL (2016) Persistent organic pollutants management and remediation. Procedia Environ Sci 31:842–848

    Google Scholar 

  93. Park HG et al (2007) Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem 42(10):1371–1377

    CAS  Google Scholar 

  94. Pathania D et al (2016) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374. https://doi.org/10.1016/j.ijbiomac.2016.02.073

    Article  CAS  PubMed  Google Scholar 

  95. Pathania D et al (2018) Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin. Carbohydr Polym 196:262–271. https://doi.org/10.1016/j.carbpol.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  96. Patra AS et al (2017) Anionically functionalized guar gum embedded with silica nanoparticles: an efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Biores Technol 225:367–376. https://doi.org/10.1016/j.biortech.2016.11.093

    Article  CAS  Google Scholar 

  97. Pehlivan E et al (2009) Lead sorption by waste biomass of hazelnut and almond shell. J Hazard Mater 167(1–3):1203–1208

    CAS  PubMed  Google Scholar 

  98. Qi X et al (2018) Fabrication of a new polysaccharide-based adsorbent for water purification. Carbohyd Polym 195:368–377

    CAS  Google Scholar 

  99. Raj V et al (2021) ‘Appraisal of Chitosan-gum Arabic-coated bipolymeric nanocarriers for efficient dye removal and eradication of the plant pathogen Botrytis cinerea. ACS Appl Mater Interfaces 13(40):47354–47370. https://doi.org/10.1021/acsami.1c12617

    Article  CAS  PubMed  Google Scholar 

  100. Rashid R et al (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res Springer 28(8):9050–9066

    CAS  Google Scholar 

  101. Rellegadla S, Prajapat G, Agrawal A (2017) ‘Polymers for enhanced oil recovery: fundamentals and selection criteria. Appl Microbiol Biotechnol Germany 101(11):4387–4402. https://doi.org/10.1007/s00253-017-8307-4

    Article  CAS  Google Scholar 

  102. Salehi H, Ebrahimi AA, Ehrampoush MH, Salmani MH et al (2020) Integration of photo-oxidation based on UV/Persulfate and adsorption processes for arsenic removal from aqueous solutions. Groundw Sustain Dev 10:100338

    Google Scholar 

  103. Salmani MH, Abedi M, Mozaffari SA, Mahvi AH, Sheibani A, Jalili M (2021) Simultaneous reduction and adsorption of arsenite anions by green synthesis of iron nanoparticles using pomegranate peel extract. J Environ Health Sci Eng 19:603–612

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Saya L et al (2021) ‘Guar gum based nanocomposites: role in water purification through efficient removal of dyes and metal ions. Carbohydr Polym 261:117851. https://doi.org/10.1016/j.carbpol.2021.117851

    Article  CAS  PubMed  Google Scholar 

  105. Shaikh T, Kumar SS (2011) Pharmaceutical and pharmacological profile of guar gum an overview. Int J Pharm Pharm Sci 3(supplement 5):38–40

    Google Scholar 

  106. Sharma A et al (2018) ‘Embelin-loaded guar gum microparticles for the management of ulcerative colitis. J Microencapsul 35(2):181–191. https://doi.org/10.1080/02652048.2018.1452991

    Article  CAS  PubMed  Google Scholar 

  107. Sharma G, Kumar A et al (2018) Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int J Biol Macromol 114:295–305. https://doi.org/10.1016/j.ijbiomac.2018.03.093

    Article  CAS  PubMed  Google Scholar 

  108. Sharma G, Sharma S et al (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohyd Polym 199:534–545. https://doi.org/10.1016/j.carbpol.2018.07.053

    Article  CAS  Google Scholar 

  109. Sharma H et al (2015) Utilization of gum tragacanth as bind enhancing agent in extended restructured mutton chops. J Food Sci Technol 52(3):1626–1633. https://doi.org/10.1007/s13197-013-1172-y

    Article  CAS  PubMed  Google Scholar 

  110. Shiva Shankar Y et al (2019) Utilization of water treatment plant (WTP) sludge for pretreatment of dye wastewater using coagulation/flocculation. Advances in waste management. Springer, Berlin, pp 107–121

    Google Scholar 

  111. Silva BDS et al (2012) Biodegradable and bioactive CGP/PVA film for fungal growth inhibition. Carbohydrate polymers 89(3):964–970. https://doi.org/10.1016/j.carbpol.2012.04.052

    Article  CAS  PubMed  Google Scholar 

  112. Singh B et al (2016) Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications. Int J Biol Macromol 88:586–602. https://doi.org/10.1016/j.ijbiomac.2016.03.051

    Article  CAS  PubMed  Google Scholar 

  113. Singh J, Dhaliwal AS (2018) Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum 157:51–60. https://doi.org/10.1016/j.vacuum.2018.08.017

    Article  CAS  Google Scholar 

  114. Singh RB, Ghosh S, Singh R (1992) Effects on serum lipids of adding fruits and vegetables to prudent diet in the Indian experiment of infarct survival (IEIS). Cardiol Switzerland 80(3–4):283–293. https://doi.org/10.1159/000175014

    Article  CAS  Google Scholar 

  115. Singh V et al (2009) Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum-silica nanocomposites. Sep Purif Technol 67(3):251–261. https://doi.org/10.1016/j.seppur.2009.02.023

    Article  CAS  Google Scholar 

  116. Smolders D et al (2019) ‘Acetic acid as a decontamination method for ICU sink drains colonized by carbapenemase-producing Enterobacteriaceae and its effect on CPE infections. J Hosp Infect Healthcare Infection Soc 102(1):82–88. https://doi.org/10.1016/j.jhin.2018.12.009

    Article  CAS  Google Scholar 

  117. Srivastava SR et al (2005) Evaluation of contraceptive activity of a mineralo-herbal preparation in Sprague-Dawley rats. Contraception 72(6):454–458. https://doi.org/10.1016/j.contraception.2005.05.026

    Article  PubMed  Google Scholar 

  118. Sun Y et al (2020) Performance evaluation and optimization of flocculation process for removing heavy metal. Chem Eng J 385:123911

    CAS  Google Scholar 

  119. Tan J et al (2018) Facile functionalization of natural peach gum polysaccharide with multiple amine groups for highly efficient removal of toxic hexavalent chromium (Cr(VI)) ions from water. ACS omega 3(12):17309–17318. https://doi.org/10.1021/acsomega.8b02599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tang Y et al (2019) Treatment of fracturing fluid waste by Fenton reaction using transition metal complexes catalyzes oxidation of hydroxypropyl guar gum at high pH. Environ Chem Lett 17(1):559–564. https://doi.org/10.1007/s10311-018-0805-9

    Article  CAS  Google Scholar 

  121. Tang Y et al (2021) A review: research progress on microplastic pollutants in aquatic environments. Sci Total Environ Elsevier 766:142572

    CAS  Google Scholar 

  122. Thakur S et al (2018) Recent approaches in guar gum hydrogel synthesis for water purification. Int J Polym Anal Charact 23(7):621–632. https://doi.org/10.1080/1023666X.2018.1488661

    Article  CAS  Google Scholar 

  123. Thombare N et al (2017) Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohyd Polym 168:274–281. https://doi.org/10.1016/j.carbpol.2017.03.086

    Article  CAS  Google Scholar 

  124. Tinas H et al (2016) Preparation of Fe $ _ 3 $ O $ _ 4 $@ montmorillonite composite as an effective sorbent for the removal of lead and cadmium from wastewater samples. Turk J Chem 40(6):974–978

    CAS  Google Scholar 

  125. Wang P et al (2016) Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem Eng J 306:280–288

    CAS  Google Scholar 

  126. Wanjeri VWO et al (2018) Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J Environ Chem Eng 6(1):1333–1346

    CAS  Google Scholar 

  127. Wong KS et al (2007) Adsorption of copper ion on magnetite-immobilised chitin. Water Sci Technol 56(7):135–143

    CAS  PubMed  Google Scholar 

  128. Wu C et al (2019) ‘Hepatoprotective potential of partially hydrolyzed guar gum against acute alcohol-induced liver injury in vitro and vivo. Nutrients. https://doi.org/10.3390/nu11050963

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wu J et al (2016) ‘Effective symptomatic treatment for severe and intractable pruritus associated with severe burn-induced hypertrophic scars: a prospective, multicenter, controlled trial. Burns J Int Soc Burn Injuries 42(5):1059–1066. https://doi.org/10.1016/j.burns.2015.09.021

    Article  Google Scholar 

  130. Wu Z et al (2020) Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater. Prep Biochem Biotechnol 50(1):37–46. https://doi.org/10.1080/10826068.2019.1658119

    Article  CAS  PubMed  Google Scholar 

  131. Xu X et al (2022) ‘Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors. J Colloid Interface Sci Elsevier 613:35–46

    CAS  Google Scholar 

  132. Yagoub H et al (2019) Complex aerogels generated from nano-polysaccharides and its derivatives for oil-water separation. Polymers 11(10):1593. https://doi.org/10.3390/polym11101593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang G-L et al (2015) Detection of gingipain K in the gingival crevicular fluid of orthodontic patients. Shanghai kou qiang yi xue = Shanghai J Stomatol 24(1):102–106

    Google Scholar 

  134. Yang X et al (2018) ‘Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater’, ACS applied materials & interfaces. ACS Publications 10(35):29982–29991

    CAS  Google Scholar 

  135. Ye Z et al (2020) Eco-friendly, cost-effective, and durable guar gum/citric acid complex coating on mesh for oil/water separation. Int J Biol Macromol 153:641–649. https://doi.org/10.1016/j.ijbiomac.2020.03.023

    Article  CAS  PubMed  Google Scholar 

  136. Yin S et al (2020) Sustainable land fi ll leachate treatment: optimize use of guar gum as natural coagulant and fl oc characterization. Environ Res 188:109737. https://doi.org/10.1016/j.envres.2020.109737

    Article  CAS  Google Scholar 

  137. You H et al (2018) Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments. Chem Eng J 334:2273–2282

    CAS  Google Scholar 

  138. Yusoff MS et al (2018) Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Manag Elsevier 74:362–372

    CAS  Google Scholar 

  139. Zahrim AY et al (2019) Nanoparticles enhanced coagulation of biologically digested leachate. Nanotechnology in water and wastewater treatment. Elsevier, NewYork, pp 205–241

    Google Scholar 

  140. Zarei Mahmoudabadi T, Abbasi F, Jalili M, Talebi P (2019) Effectiveness of Plantago major extract as a natural coagulant in removal of reactive blue 19 dye from wastewater. Int J Environ Sci Technol 16:7893–7900

    CAS  Google Scholar 

  141. Zhang Z (2018) ‘Combined treatment of hydroxypropyl guar gum in oilfield fracturing wastewater by coagulation and the UV/H(2)O(2)/ferrioxalate complexes process. Water Sci Technol A J Int Assoc Water Pollut Res 77(3–4):565–575. https://doi.org/10.2166/wst.2017.552

    Article  CAS  Google Scholar 

  142. Zhao C et al (2021) Application of coagulation/flocculation in oily wastewater treatment: a review. Sci Total Environ Elsevier 765:142795

    CAS  Google Scholar 

  143. Zhang Y, Miao C, Zhu J et al (2022) The impact of landslides on chemical and microbial properties of soil in a temperate secondary forest ecosystem. J For Res 33:1913–1923. https://doi.org/10.1007/s11676-022-01466-5

    Article  CAS  Google Scholar 

  144. Zhu X et al (2021) Rapid gelling of guar gum hydrogel stabilized by copper hydroxide nanoclusters for efficient removal of heavy metal and supercapacitors. Front Chem 9:58. https://doi.org/10.3389/fchem.2021.794755

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks are owed to Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heidar Meftahizade or Mansour Ghorbanpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

All authors have been personally and actively involved in substantial work leading to the manuscript and will take public responsibility for its content.

Consent for publication

All authors have agreed to submit the manuscript in its current form for consideration and possible publication in “Polymer Bulletin .”

Ethical approval

This material is the authors own original work, which has not been previously published elsewhere. Also, the manuscript is not currently being considered for publication elsewhere. This manuscript reflects the authors’ own research and analysis in a truthful and complete manner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, M., Meftahizade, H., Golafshan, A. et al. Green synthesized guar plant composites for wastewater remediation: a comprehensive review. Polym. Bull. 81, 247–273 (2024). https://doi.org/10.1007/s00289-023-04758-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04758-w

Keywords

Navigation