Skip to main content
Log in

Designing of anti-corrosive poly (γ-glycidoxypropyltriethoxysilane)-coated aluminum alloy via electro-polymerization: effect of cerium nitrate concentration

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effect of cerium nitrate as an additive to the polymerization solution on the physico-chemical and anti-corrosion properties of sol–gel γ-glycidoxypropyltriethoxysilane polymers (GPS) applied onto AA2024-T3 aluminum alloy. The polymerization solution was prepared from a mixture of silane precursor and Ce(NO3)3 with a concentration ranging from 0 to 10−1 M. The coatings were electrodeposited by chronoamperometry at an applied potential of − 0.80 V/SCE. Their morphologies were examined by Scanning Electron Microscopy (SEM). The relative chemical compositions were characterized using Attenuated Total Reflectance Infrared Spectroscopy (FTIR-ATR) and X-ray Diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was carried out to assess coating corrosion behaviors in a 5 × 10−2 M NaCl solution. Results showed that the addition of Ce(NO3)3 affected the uniformity, roughness, and thickness of the electrodeposited coatings. Furthermore, cerium improved the anti-corrosion performance of GPS film, particularly at a concentration of 3.3 × 10−2 M. This corrosion resistance resulted mainly from blocking the corrosion activity of the damaged surface through the formation of protective Ce oxides/hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Iannuzzi M, Frankel GS (2007) Mechanisms of corrosion inhibition of AA2024-T3 by vanadates. Corros Sci 49:2371–2391. https://doi.org/10.1016/j.corsci.2006.10.027

    Article  CAS  Google Scholar 

  2. Mateos JI, Corral IB, Calvet JV, Aleman C, Iribarren JI, Armelin E (2015) Silane and epoxy coatings: a bilayer system to protect AA2024 alloy. Prog Org Coat 81:47–57. https://doi.org/10.1016/j.porgcoat.2014.12.014

    Article  CAS  Google Scholar 

  3. Dalmoro V, Santos J, Azambuja D (2012) Corrosion behavior of AA2024-T3 alloy treated with phosphonate-containing TEOS. J Solid State Electrochem 16:403–414. https://doi.org/10.1007/s10008-011-1346-3

    Article  CAS  Google Scholar 

  4. Palanivel V, Huang Y, van Ooij WJ (2005) Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution. Prog Org Coat 53:153–168. https://doi.org/10.1016/j.porgcoat.2003.07.008

    Article  CAS  Google Scholar 

  5. Palanivel V, Zhu D, van Ooij WJ (2003) Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Prog Org Coat 47:384–392. https://doi.org/10.1016/j.porgcoat.2003.08.015

    Article  CAS  Google Scholar 

  6. Palomino LEM, Suegamaa PH, Aoki IV, Paszti Z, Meloa HG (2007) Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024–T3 covered with Cu-rich smut. Electrochim Acta 51:5943–5953. https://doi.org/10.1016/j.electacta.2006.03.036

    Article  CAS  Google Scholar 

  7. Dorman GSE, Lee Y (2011) Effect of chromate primer on corrosion fatigue in aluminum alloy 7075. Proced Eng 10:1220–1225. https://doi.org/10.1016/j.proeng.2011.04.203

    Article  CAS  Google Scholar 

  8. Cabral A, Duarte RG, Montemor MF, Zheludkevich ML, Ferreira MGS (2005) Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corros Sci 47:869–881. https://doi.org/10.1016/j.corsci.2004.07.024

    Article  CAS  Google Scholar 

  9. Osborne J, Blohowiak K, Taylor S, Hunter C, Bierwagen G, Carlson B, Bernard D, Donley MS (2001) Testing and evaluation of nonchromated coating systems for aerospace applications. Prog Org Coat 41:217–225. https://doi.org/10.1016/S0300-9440(01)00132-1

    Article  CAS  Google Scholar 

  10. Mrad M, Montemor MF, Dhouibi L, Triki E (2012) Deposition of hybrid 3-GPTMS’s film on AA2024-T3: dependence of film morphology and protectiveness performance on coating conditions. Prog Org Coat 73:264–271. https://doi.org/10.1016/j.porgcoat.2011.11.019

    Article  CAS  Google Scholar 

  11. van Ooij WJ, Zhu DQ, Prasard G, Jayaseelan S, Fu Y, Teredesai N (2000) Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding. Surf Eng 16:386–396. https://doi.org/10.1179/026708400101517369

    Article  Google Scholar 

  12. van Ooij JW, Zhu DQ (2004) Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog Org Coat 49:42–53. https://doi.org/10.1016/j.porgcoat.2003.08.009

    Article  CAS  Google Scholar 

  13. Collazo A, Covelo A, Novoa XR, Perez C (2012) Corrosion protection performance of sol–gel coatings doped with red mud applied on AA2024-T3. Prog Org Coat 74:334–342. https://doi.org/10.1016/j.porgcoat.2011.10.001

    Article  CAS  Google Scholar 

  14. Khramov AN, Balbyshev VN, Voevodin NN, Donley MS (2003) Nanostructured sol–gel derived conversion coatings based on epoxy- and amino-silanes. Prog Org Coat 47:207–213. https://doi.org/10.1016/S0300-9440(03)00140-1

    Article  CAS  Google Scholar 

  15. Franquet A, Le Pen C, Terryn H, Vereecken J (2003) Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium. Electrochim Acta 48:1245–1255. https://doi.org/10.1016/S0013-4686(02)00832-0

    Article  CAS  Google Scholar 

  16. Song J, van Ooij WJ (2003) Bonding and Corrosion Protection Mechanisms of γ-APS and BTSE Silane Films on Aluminum Substrates. J Adhes Sci Technol 17:2191–2221. https://doi.org/10.1163/156856103772150788

    Article  CAS  Google Scholar 

  17. Correa-Borroel AL, Gutierrez S, Arce E, Cabrera-Sierra R, Herrasti P (2009) Organosilanes and polypyrrole as anticorrosive treatment of aluminium 2024. J Appl Electrochem 39:2385–2395. https://doi.org/10.1007/s10800-009-9925-z

    Article  CAS  Google Scholar 

  18. Owczarek E, Adamczyk L (2016) Electrochemical and anti-corrosion properties of bilayer polyrhodanine/isobutyltriethoxysilane coatings. J Appl Electrochem 46:635–643. https://doi.org/10.1007/s10800-016-0946-0

    Article  CAS  Google Scholar 

  19. Mrad M, Ben Amor Y, Dhouibi L, Montemor MF (2018) Corrosion prevention of AA2024-T3 aluminum alloy with a polyaniline/poly(γ-glycidoxypropyltrimethoxysilane) bi-layer coating: comparative study with polyaniline mono-layer feature. Surf Coat Technol 337:1–11. https://doi.org/10.1016/j.surfcoat.2017.12.053

    Article  CAS  Google Scholar 

  20. Mrad M, Ben Amor Y, Dhouibi L, Montemor MF (2017) Effect of AA2024-T3 surface pretreatment on the physico-chemical properties and the anti-corrosion performance of poly(γ-glycidoxypropyltrimethoxysilane) sol-gel coating. Surf Interface Anal 50:335–345. https://doi.org/10.1002/sia.6373

    Article  CAS  Google Scholar 

  21. Mrad M, Dhouibi L, Montemor MF (2018) Elaboration of γ-glycidoxypropyltrimethoxysilane coating on AA2024-T3 aluminum alloy: influence of synthesis route on physico-chemical and anti-corrosion properties. Prog Org Coat 121:1–12. https://doi.org/10.1016/j.porgcoat.2018.04.005

    Article  Google Scholar 

  22. Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254. https://doi.org/10.1016/j.electacta.2008.08.069

    Article  CAS  Google Scholar 

  23. Ramezanzadeh B, Moradiana S, Khosravia A, Tahmasebi N (2011) A new approach to investigate scratch morphology and appearance of an automotive coating containing nano-SiO2 and polysiloxane additives. Prog Org Coat 71:541–552. https://doi.org/10.1016/j.porgcoat.2011.06.014

    Article  CAS  Google Scholar 

  24. Ramezanzadeh B, Moradian S, Tahmasebi N, Khosravi A (2011) Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat. Prog Org Coat 72:621–631. https://doi.org/10.1016/j.porgcoat.2011.07.003

    Article  CAS  Google Scholar 

  25. Schem M, Schmidt T, Gerwann J, Wittmar M, Veith M, Thompson GE, Molchan IS, Hashimoto T, Skeldon P, Phani AR, Santucci S, Zheludkevich ML (2009) CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros Sci 51:2304–2315. https://doi.org/10.1016/j.corsci.2009.06.007

    Article  CAS  Google Scholar 

  26. Uhart A, Ledeuil JB, Gonbeau D, Dupin JC, Bonino JP, Ansart F, Esteban J (2016) An Auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy. Appl Surf Sci 390:751–759. https://doi.org/10.1016/j.apsusc.2016.08.170

    Article  CAS  Google Scholar 

  27. Zand RZ, Verbeken K, Flexer V, Adriaens A (2014) Effects of ceria nanoparticle concentrations on the morphology and corrosion resistance of cerium–silane hybrid coatings on electro-galvanized steel substrate. Mat Chem Phy 145:450–460. https://doi.org/10.1016/j.matchemphys.2014.02.035

    Article  CAS  Google Scholar 

  28. Rosero-Navarro NC, Pellice SA, Duràn A, Ceré S, Aparicio M (2010) Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel coatings. J Sol-Gel Sci Technol 54:301–331. https://doi.org/10.1007/s10971-010-2194-9

    Article  CAS  Google Scholar 

  29. Ershov S, Druart ME, Poelman M, Cossement D, Snyders R, Olivier MG (2013) Deposition of cerium oxide thin films by reactive magnetron sputtering for the development of corrosion protective coatings. Corros Sci 75:158–168. https://doi.org/10.1016/j.corsci.2013.05.028

    Article  CAS  Google Scholar 

  30. Campestrini P, Terryn H, Hovestad A, Wit JHW (2004) Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure. Surf Coat Technol 176:365–381. https://doi.org/10.1016/S0257-8972(03)00743-6

    Article  CAS  Google Scholar 

  31. Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37. https://doi.org/10.1016/j.surfcoat.2014.06.031

    Article  CAS  Google Scholar 

  32. MatWeb (2008). Material Property Data. http://www.matweb.com/

  33. Katsounaros I, Kyriacou G (2007) Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochim Acta 52:6412–6420. https://doi.org/10.1016/j.electacta.2007.04.050

    Article  CAS  Google Scholar 

  34. Bouchaud B, Balmain J, Bonnet G, Pedraza F (2013) Correlations between electrochemical mechanisms and growth of ceria based coatings onto nickel substrates. Electrochim Acta 88:798–806. https://doi.org/10.1016/j.electacta.2012.10.112

    Article  CAS  Google Scholar 

  35. Hamlaoui Y, Pedraza F, Remazeilles C, Cohendoz S, Rébéré C, Tifouti L, Creus J (2009) Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions: part I. Electrochemical and analytical characterisation. Mat Chem Phys 113:650–657. https://doi.org/10.1016/j.matchemphys.2008.08.027

    Article  CAS  Google Scholar 

  36. Heakal FET, Shehat OS, Tantawy NS (2012) Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution. Corros Sci 56:86–95. https://doi.org/10.1016/j.corsci.2011.11.019

    Article  CAS  Google Scholar 

  37. Ma L, Wang X, Wang J, Zhang J, Yin C, Fan L, Zhang D (2021) Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings. J Mater Sci 56:10108–10123. https://doi.org/10.1007/s10853-021-05932-z

    Article  CAS  Google Scholar 

  38. Lone SA, Rahman A (2020) Hot corrosion behaviour of electroless deposited nano-structured cerium oxide coatings on superalloy. J Inst Eng India Ser D 101:81–92. https://doi.org/10.1007/s40033-020-00220-7

    Article  CAS  Google Scholar 

  39. Rudd AL, Breslin CB, Mansfield F (2000) The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros Sci 42:275–288. https://doi.org/10.1016/S0010-938X(99)00076-1

    Article  CAS  Google Scholar 

  40. Dabalà M, Armelao L, Buchberger A, Calliari I (2001) Cerium-based conversion layers on aluminum alloys. Appl Surf Sci 172:312–322. https://doi.org/10.1016/S0169-4332(00)00873-4

    Article  Google Scholar 

  41. Zheludkevich ML, Serr R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochim Acta 51:208–217. https://doi.org/10.1016/j.electacta.2005.04.021

    Article  CAS  Google Scholar 

  42. Palomino LM, Suegama PH, Aoki IV, Montemor MF, Melo HGD (2009) Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024–T3. Corros Sci 51:1238–1250. https://doi.org/10.1016/j.corsci.2009.03.012

    Article  CAS  Google Scholar 

  43. Paussa L, Rosero-Navarro NC, Andreatta F, Castro Y, Duran A, Aparicio M, Fedrizzi L (2010) Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024. Surf Interface Anal 42:299–305. https://doi.org/10.1002/sia.3198

    Article  CAS  Google Scholar 

  44. Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M (2008) Effects of Ce-containing sol–gel coatings reinforced with SiO2. Corros Sci 50:1283–1291. https://doi.org/10.1016/j.corsci.2008.01.031

    Article  CAS  Google Scholar 

  45. Bahrami M, Borhani GH, Bakhshi SR, Ghasemi A (2015) Preparation and evaluation of corrosion behavior of GPTMS–TEOS hybrid coatings containing Zr and Ce on aluminum alloy 6061–T6. J Sol-Gel Sci Technol 76:552–561. https://doi.org/10.1007/s10971-015-3805-2

    Article  CAS  Google Scholar 

  46. Aguirre JM, Gutiérrez A, Giraldo O (2011) Simple route for the synthesis of copper hydroxy salts. J Braz Chem Soc 22:546–551. https://doi.org/10.1590/S0103-50532011000300019

    Article  CAS  Google Scholar 

  47. Ba Z, Dong Q, Zhang X, Qiang X, Cai Z, Luo X (2017) Cerium-based modification treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy assisted with alternating electric field. J Alloy Compd 695:106–113. https://doi.org/10.1016/j.jallcom.2016.10.139

    Article  CAS  Google Scholar 

  48. Sassi W, Msaadi R, Hihn J-Y, Zrelli R (2020) Effect of pyridine as advanced polymeric inhibitor for pure copper: adsorption and corrosion mechanisms. Polym Bull. https://doi.org/10.1007/s00289-020-03311-3

    Article  Google Scholar 

  49. Sassi W, Zrelli R, Hihn J-Y, Berçot P, Rezrazi M, Ammar S (2020) Silicate dip-coat mechanism as an inhibitor against copper dissolution into alkaline chloride media. J Bio- Tribo-Corros 6:50. https://doi.org/10.1007/s40735-020-00348-9

    Article  Google Scholar 

  50. Sassi W, Boubaker H, Bahar S, Othman M, Ghorbal A, Zrelli R, Hihn J-Y (2020) A challenge to succeed the electroplating of nanocomposite Ni–Cr alloy onto porous substrate under ultrasonic waves and from a continuous flow titanium nanofluids. J Alloy Compd 828:154437. https://doi.org/10.1016/j.jallcom.2020.154437

    Article  CAS  Google Scholar 

  51. Sassi W, Dhouibi L, Hihn J-Y, Berçot P, Rezrazi M, Ammar S (2019) Corrosion protection of Cu electrical cable by W-Ni composite coatings doped with TiO2 nanoparticles: influence of pulse currents. J Mater Eng Perform. https://doi.org/10.1007/s11665-019-04288-5

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the CQE funding UIDB/00100/2020, UIDP/00100/2020, LA/P/0056/2020.

Funding

No funding was reported.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wafa Sassi.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrad, M., Sassi, W., Hihn, JY. et al. Designing of anti-corrosive poly (γ-glycidoxypropyltriethoxysilane)-coated aluminum alloy via electro-polymerization: effect of cerium nitrate concentration. Polym. Bull. 81, 787–809 (2024). https://doi.org/10.1007/s00289-023-04747-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04747-z

Navigation