Skip to main content
Log in

Surface modification of sericite and preparation of sericite/polystyrene with enhanced thermal-insulating performance

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Since sericite has no ion exchange capacity and no expandability in water, it can hardly be intercalated, which substantially degrades the thermal-insolating performance of sericite/polystyrene composite materials. In this paper, the surface modification technique of sericite was optimized. Moreover, the coupling agent and sericite were dissolved in a polar organic solvent for the first time, so that they can fully react in the organic solvent, which significantly increase the cation exchange capabilities of sericite. After surface modification, the sericite exhibits layered morphology, and the coupling agent spots can be clearly observed on the surface. The contact angle of the modified sericite increases from 0° to 90°, thus ensuring the hydrophobic effect. Therefore, the expandable polystyrene (EPS) with uniform particles can be prepared by adding the modified sericite into the styrene suspension polymerization, which guarantees a 15% reduction in thermal conductivity of EPS. Our investigation on the surface modification of sericite is expected to shed more light on the fabrication of clay/polymer composite system, and the EPS may potentially be applied as an ideal thermal insulation material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li H, Feng Q, Yang S, Ou L, Lu Y (2014) The entrainment behaviour of sericite in microcrystalline graphite flotation. Int J Miner Process 127:1–9. https://doi.org/10.1016/j.minpro.2013.12.006

    Article  CAS  Google Scholar 

  2. Cai L, Dou Q (2019) Investigation on the melting and crystallization behaviors, mechanical properties and morphologies of polypropylene/sericite composites. J Mater Sci 54(4):3600–3618. https://doi.org/10.1007/s10853-018-3049-y

    Article  CAS  Google Scholar 

  3. Ren M, Yin H, Lu Z, Wang A, Yu L, Jiang T (2010) Evolution of rutile TiO2 coating layers on lamellar sericite surface induced by Sn4+ and the pigmentary properties. Powder Technol 204(2–3):249–254. https://doi.org/10.1016/j.powtec.2010.08.009

    Article  CAS  Google Scholar 

  4. Gao H, Yuan J, Wang X, Guan J, Zhang L, Jing Z, Mao Y (2007) Mechanism of surface modification for sericite. J Wuhan Univ Technol 22(3):470–472. https://doi.org/10.1007/s11595-006-3470-y

    Article  CAS  Google Scholar 

  5. González-Miranda FDM, Garzón E, Reca J, Pérez-Villarejo L, Martínez-Martínez S, Sánchez-Soto PJ (2018) Thermal behaviour of sericite clays as precursors of mullite materials. J Therm Anal Calorim 132(2):967–977. https://doi.org/10.1007/s10973-018-7046-9

    Article  CAS  Google Scholar 

  6. Shih Y, Shen Y (2009) Swelling of sericite by LiNO3-hydrothermal treatment. Appl Clay Sci 43(2):282–288. https://doi.org/10.1016/j.clay.2008.09.006

    Article  CAS  Google Scholar 

  7. Wang X, Li J-h, Guan W-m, Fu M-j, Liu L-j (2016) Emulsion-templated high porosity mullite ceramics with sericite induced textured structures. Mater Des 89:1041–1047. https://doi.org/10.1016/j.matdes.2015.10.085

    Article  CAS  Google Scholar 

  8. Dong Y-b, Li H, Lin H, Zhang Y (2017) Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction. Int J Min Met Mater 24(4):369–376. https://doi.org/10.1007/s12613-017-1416-3

    Article  CAS  Google Scholar 

  9. Tian J, Gao H, Guan J, Ren Z (2017) Modified floc-flotation in fine sericite flotation using polymethylhydrosiloxane. Sep Purif Technol 174:439–444. https://doi.org/10.1016/j.seppur.2016.10.051

    Article  CAS  Google Scholar 

  10. Yun YH, Han SP, Lee SH, Choi SC (2002) Surface modification of sericite using TiO2 powders prepared by Alkoxide hydrolysis: whiteness and SPF indices of TiO2-adsorbed sericite. J Mater Synth Process 10(6):359–365. https://doi.org/10.1023/A:1023842004559

    Article  CAS  Google Scholar 

  11. Shinde DB, Pawar R, Vitore J, Kulkarni D, Musale S, Giram P (2021) Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. Polym Adv Technol 32(11):4204–4222. https://doi.org/10.1002/pat.5457

    Article  CAS  Google Scholar 

  12. Hu B, Hu Q, Xu D, Chen C (2017) Macroscopic and microscopic investigation on adsorption of Sr(II) on sericite. J Mol Liq 225:563–568. https://doi.org/10.1016/j.molliq.2016.11.102

    Article  CAS  Google Scholar 

  13. Abdullah NH, Shameli K, Abdullah EC, Abdullah LC (2020) Low cost and efficient synthesis of magnetic iron oxide/activated sericite nanocomposites for rapid removal of methylene blue and crystal violet dyes. Mater Charact 163:110275. https://doi.org/10.1016/j.matchar.2020.110275

    Article  CAS  Google Scholar 

  14. Yang J, Li S, Jiang H, Su C, Shao Y, Gao Y, Li J (2018) Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method. J Mater Sci 54(2):1197–1204. https://doi.org/10.1007/s10853-018-2890-3

    Article  CAS  Google Scholar 

  15. Liang Y, Ding H, Sun S, Chen Y (2017) Microstructural modification and characterization of sericite. Mater 10(10):1182. https://doi.org/10.3390/ma10101182

    Article  CAS  Google Scholar 

  16. Chauhan S, Aggarwal P, Karmarkar A (2015) The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. J Compos Mater 50(25):3515–3524. https://doi.org/10.1177/0021998315622050

    Article  CAS  Google Scholar 

  17. Mao H, Lan S, Mao H, Ren J, Yi X, Huang Z, Li X (2022) Experimental study on properties of ultrasonic coupling agent with graphene in NDT. Appl Sci 12(3):1236. https://doi.org/10.3390/app12031236

    Article  CAS  Google Scholar 

  18. Mukherjee M, Nayak G, Bose S, Das CK (2009) Improvement of the properties of PC/LCP/MWCNT with or without silane coupling agents. Polym-Plast Technol 48(11):1107–1112. https://doi.org/10.1080/03602550903147239

    Article  CAS  Google Scholar 

  19. Xiao C, Li D, Zeng D, Lang F, Xiang Y, Lin Y (2021) A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization. Polym Bull 78(2):863–883. https://doi.org/10.1007/s00289-020-03143-1

    Article  CAS  Google Scholar 

  20. Xiao C, Lang F, Xiang Y, Lin Y, Li D (2021) Preparation and characterization of quaternary ammonium salt and 3-aminopropyltriethoxysilane-modified sericite mica. Clay Miner 56(2):87–98. https://doi.org/10.1180/clm.2021.22

    Article  CAS  Google Scholar 

  21. Adachi A, Takagi S, Okano T (2002) Adsorption and adsorption mechanism of rice bran for chloroform from tap water. Chemosphere 46(1):87–92. https://doi.org/10.1016/S0045-6535(01)00080-7

    Article  CAS  PubMed  Google Scholar 

  22. Ammann P, Laethem CL, Kedderis GL (1998) Chloroform-induced cytolethality in freshly isolated male B6C3F1Mouse and F-344 rat hepatocytes. Toxicol Appl Pharm 149(2):217–225. https://doi.org/10.1006/taap.1997.8351

    Article  CAS  Google Scholar 

  23. Uchida M, Ito S, Kawasaki N, Nakamura T, Tanada S (1999) Competitive adsorption of chloroform and iron ion onto activated carbon fiber. J Colloid Interf Sci 220(2):406–409. https://doi.org/10.1006/jcis.1999.6519

    Article  CAS  Google Scholar 

  24. Zhang X, Wei D, Sun X, Bai C, Du Y (2021) Free available chlorine initiated Baeyer-Villiger oxidation: a key mechanism for chloroform formation during aqueous chlorination of benzophenone UV filters. Environ Pollut 268:115737. https://doi.org/10.1016/j.envpol.2020.115737

    Article  CAS  PubMed  Google Scholar 

  25. Lakshminarayanan PS, Kumar DK, Ghosh P (2006) solid state structural evidence of chloroform−benzene−chloroform adduct trapped in hexaanthryl octaaminocryptand channels. J Am Chem Soc 128(30):9600–9601. https://doi.org/10.1021/ja063228g

    Article  CAS  PubMed  Google Scholar 

  26. Ito M, Sakamoto T, Uehara M, Tsuruta K, Tamura K, Mutoh H, Nagai K (2011) Combustion behavior and application of polyolefin-based floor sheet laminated with Nylon-6/clay nanocomposites film. Fire Mater 35(3):171–181. https://doi.org/10.1002/fam.1046

    Article  CAS  Google Scholar 

  27. Yan Q, Lei Y, Yuan J (2010) Preparation of titanium dioxide compound pigments based on kaolin substrates. J Coat Technol Res 7(2):229–237. https://doi.org/10.1007/s11998-009-9172-6

    Article  CAS  Google Scholar 

  28. Tokoro T, Ishikawa T, Shirai S, Nakamura T (2016) Estimation methods for thermal conductivity of sandy soil with electrical characteristics. Soils Found 56(5):927–936. https://doi.org/10.1016/j.sandf.2016.08.016

    Article  Google Scholar 

  29. Mallick S, Sarkar S, Bandyopadhyay B, Kumar P (2018) Effect of ammonia-water complex on decomposition of carbonic acid in troposphere: a quantum chemical investigation. Comput Theor Chem 1132:50–58. https://doi.org/10.1016/j.comptc.2018.04.005

    Article  CAS  Google Scholar 

  30. Xu X, Ding H, Wang YB, Liang Y, Jiang W (2012) Preparation and characterization of activated sericite modified by fluorosilicate. Adv Mater Res 427:70–76. https://doi.org/10.4028/www.scientific.net/AMR.427.70

    Article  CAS  Google Scholar 

  31. Sokov VN (2018) Highly porous granulated corundum filler of alumina-foam polystyrene mixture. Part 3. Theoretical premises of pelletizing alumina-polystyrene foam mixtures in a granulator1. Refract Ind Ceram 58(5):542–544. https://doi.org/10.1007/s11148-018-0141-4

    Article  CAS  Google Scholar 

  32. Gu J-W, Zhang Q, Zhang J, Wang W (2010) Studies on the preparation of polystyrene thermal conductivity composites. Polym-Plast Technol 49(13):1385–1389. https://doi.org/10.1080/03602559.2010.512326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Jilin Scientific and Technological Department Program (20200403134SF).

Funding

Jilin Scientific and Technological Development Program, 20200403134SF, Junfeng Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, F., Wang, J. et al. Surface modification of sericite and preparation of sericite/polystyrene with enhanced thermal-insulating performance. Polym. Bull. 81, 773–786 (2024). https://doi.org/10.1007/s00289-023-04743-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04743-3

Keywords

Navigation