Skip to main content
Log in

A new approach for synthesis of cyclic poly(N-isopropylacrylamide), for applying in biomaterial applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research reports the successful synthesis of the cyclic poly(N-isopropyl acrylamide) (cPNIPAAM) by a new method. For this purpose, \(\alpha\), ω-difunctionalized precursor was synthesized, applying a free radical polymerization process in the methanol solvent, and using the nitroxide component, hydroxy-TEMPO, as the terminator for the first time. Then, end-to-end equilibrium, with an appropriate coupling agent, was utilized for cyclization reaction in the two solvents of water and dimethylformamide (DMF). Using a terminator to produce functionalized chains led to controlled molecular weight polymers. As a result, reduced molecular weight precursors were created, resulting in smaller rings with improved water solubility, LCST temperature and more environmentally compatible friendly products, particularly in medicinal objectives. In comparison with previous techniques, these characteristics represent the precise innovation of our study. The yield and optimum polymerization conditions were provided. The polymer products were characterized by FTIR, 1HNMR, GPS, TLC, DSC, DLS and viscometry methods. The morphology and molecular weight were compared with the previously produced polymers. The results confirmed the formation of polymers with lower molecular weight compared to previous methods. Despite its lower cyclization yield, water was a better solvent compared to DMF.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

ATRP:

Atom transfer radical polymerization

cPNIPAAM:

Cyclic poly(N-isopropylacrylamide)

DLS:

Dynamic light scattering

DMF:

Dimethylformamide

DSC:

Differential scanning calorimetry

DMSO:

Dimethyl sulfoxide

FTIR:

Fourier transform infrared spectroscopy

GPC:

Gel permeation chromatography

HNMR:

Hydrogen nuclear magnetic resonance

LCST:

Lower critical solution temperature

M n :

The number average molecular weight

M v :

Viscosity average molecular weight

M w :

Weight average molecular weight

NIPAAM:

N-Isopropylacrylamide

NMP:

Nitroxide-mediated polymerization

PNIPAAM:

Poly(N-isopropylacrylamide)

RAFT:

Addition-fragmentation chain transfer

T g :

Glass transition temperature

T m :

Melting point

TLC:

Thin layer chromatography

THF:

Tetrahydrofuran

W i :

Weight of initiator

W m :

Weight of monomer

W p :

Weigh of linear polymer

W pi :

Weight of 2-chloro-1-methylpyridinium iodide

W t :

Weight of terminator

W tea :

Weight of triethylamine

References

  1. Huaping T, Ramirez CM, Miljkovic N, Li H, PeterRubin J, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30(36):6844–6853. https://doi.org/10.1016/j.biomaterials.2009.08.058

    Article  CAS  Google Scholar 

  2. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  3. Cosgriff-Hernandez E, Mikos AG (2008) New biomaterials as scaffolds for tissue engineering. Springer. https://doi.org/10.1007/s11095-008-9666-4

    Book  Google Scholar 

  4. Pratt AB, Weber FE, Schmoekel HG, Müller R, Hubbell JA (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86(1):27–36. https://doi.org/10.1002/bit.10897

    Article  CAS  PubMed  Google Scholar 

  5. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236. https://doi.org/10.1016/j.addr.2012.09.009

    Article  Google Scholar 

  6. Gao C, Möhwald H, Shen J (2005) Thermosensitive poly(allylamine)-g-poly(N-isopropylacrylamide): synthesis, phase separation and particle formation. Polymer 46(12):4088–4097. https://doi.org/10.1016/j.polymer.2005.02.115

    Article  CAS  Google Scholar 

  7. BucatariuFundueanuPrisacaruMihaela BalanStoicaHarabagiuConstantin SGIMIVM (2014) Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. Polym Res 21(11):1–12. https://doi.org/10.1007/s10965-014-0580-7

    Article  CAS  Google Scholar 

  8. Saunders BR, EmmaDaly NL, Teow S, Hu X, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Colloid Interface Sci 147:251–262. https://doi.org/10.1016/j.cis.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53(23):5209–5231. https://doi.org/10.1016/j.polymer.2012.08.053

    Article  CAS  Google Scholar 

  10. Lanzalaco S, Armelin E (2017) Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3(4):36. https://doi.org/10.3390/gels3040036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He W, Ma Y, Gao X, Wang X, Dai X, Song J (2020) Application of poly(N-isopropylacrylamide) as thermosensitive smart materials. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1676/1/012063

    Article  Google Scholar 

  12. Jinming H, Liu S (2017) Topological effects of macrocyclic polymers: from precise synthesis to biomedical applications. Sci China Chem 60(9):1153–1161. https://doi.org/10.1007/s11426-017-9083-1

    Article  CAS  Google Scholar 

  13. Xu J, Ye J, Liu S (2007) Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40(25):9103–9110. https://doi.org/10.1021/ma0717183

    Article  CAS  Google Scholar 

  14. McLeish T (2002) Polymers without beginning or end. J Sci 297(5589):2005–2006. https://doi.org/10.1126/science.1076810

    Article  CAS  Google Scholar 

  15. Piromjitpong P, Ratanapanee P, Thumrongpatanaraks W, Kongsaeree P, Phomphrai K (2012) Synthesis of cyclic polylactide catalysed by bis (salicylaldiminato) tin(II) complexes. Dalton Trans 41(41):12704–12710. https://doi.org/10.1039/c2dt31678a

    Article  CAS  PubMed  Google Scholar 

  16. Ge Z, Wang D, Zhou Y, Liu H, Liu S (2009) Synthesis of organic/Inorganic hybrid quatrefoil-shaped star-cyclic polymer containing a polyhedral oligomeric silsesquioxane core. Macromolecules 42:2903–2910. https://doi.org/10.1021/ma802585k

    Article  CAS  Google Scholar 

  17. Ge Z, Yueming Zhou Y, Xu J, Liu H, Chen D, Liu S (2009) High-efficiency preparation of macrocyclic diblock copolymers via selective click reaction in micellar media. J Am Chem Soc 131:1628–1629. https://doi.org/10.1021/ja808772z

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Grayson SM (2012) Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv Drug Deliv Rev 64(9):852–865. https://doi.org/10.1016/j.addr.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  19. Kricheldorf HR (2010) Cyclic polymers: Synthetic strategies and physical properties. J Polym Sci Part A Polym Chem 48(2):251–284. https://doi.org/10.1002/pola.23755

    Article  CAS  Google Scholar 

  20. Nasongkla N, Chen B, Macaraeg N, Fox ME, Fréchet JMJ, Szoka FC (2009) Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J Am Chem Soc 131(11):3842–3843. https://doi.org/10.1021/ja900062u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen B, Jerger K, Fréchet JMJ, Szoka FC Jr (2009) The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J Control Release 140(3):203–209. https://doi.org/10.1016/j.jconrel.2009.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoskins JN, Grayson SM (2009) Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules 42(17):6406–6413. https://doi.org/10.1021/ma9011076

    Article  CAS  Google Scholar 

  23. Kobayashi S (2008) New frontiers in polymer synthesis, vol 217. Springer, Berlin. https://doi.org/10.1007/978-3-540-69808-1

    Book  Google Scholar 

  24. Wan X, Liu T, Liu S (2011) Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Biomacromol 12:1146–1154. https://doi.org/10.1021/bm101463d

    Article  CAS  Google Scholar 

  25. Lepoittvin B, Perrot X, Masure M, Hemery P (2001) New route to synthesis of cyclic polystyrenes using controlled free radical polymerization. Macromolecules 34(3):425–429. https://doi.org/10.1021/ma001183c

    Article  CAS  Google Scholar 

  26. Qiu XP, Tanaka F, Winnik FM (2007) Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide) in aqueous solution. Macromolecules 40(20):7069–7071. https://doi.org/10.1021/ma071359b

    Article  CAS  Google Scholar 

  27. Liu B, Wang H, Zhang L, Yang G, Liu X, Kim I (2013) A facile approach for the synthesis of cyclic poly(N-isopropylacrylamide) based on an anthracene–thiol click reaction. Polym Chem 4(8):2428–2431. https://doi.org/10.1039/c3py00184a

    Article  CAS  Google Scholar 

  28. TCI chemicals (2020) Polymerization initiators Brouchor F2037-E. https://www.tcichemicals.com

  29. Bevington JC (1987) Initiation of polymerization: azo compounds and peroxides. Makromolekulare Chem Macromol Symposia 10(1):89–107. https://doi.org/10.1002/masy.19870100106

    Article  Google Scholar 

  30. L. outsuka chemical co, Azo series. https://www.otsukac.co.jp/en/products/chemical/azo

  31. Mukaiyama T, Usui M, Saigo K (1976) The facile synthesis of lactones. J Chem Lett 5(1):49–50. https://doi.org/10.1246/cl.1976.49

    Article  Google Scholar 

  32. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2009) Introduction to spectroscopy. Cengage Learning, Belmont

    Google Scholar 

  33. Ganachaud F, Monteiro MJ, Gilbert RG, Dourges MA, Thang SH, Rizzardo E (2000) Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules 33(18):6738–6745. https://doi.org/10.1021/ma0003102

    Article  CAS  Google Scholar 

  34. Semlyen JA (2002) Cyclic polymers. In: Benmounaa M, Maschke U (eds) Theoretical aspects of cyclic polymers: effects of excluded volume interactions. Springer, Dordrecht, pp 740–760. https://doi.org/10.1007/0-306-47117-5

    Chapter  Google Scholar 

  35. Hatakeyama T, Quinn FX (1999) Thermal analysis: fundamental and application to polymer science, 2nd edn. Wiley, New York

    Google Scholar 

  36. Lemanowicz M, Gierczycki A, Kuz´nikSancewiczImiela WRP (2014) Determination of lower critical solution temperature of thermosensitive flocculants. Miner Eng 69:170–176. https://doi.org/10.1016/j.mineng.2014.07.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to take this opportunity to appreciate the Research Deputy to the University of Kashan for financially supporting this research under the Grant code of Pajoohaneh-1400/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Sodeifian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshyan, S., Sodeifian, G. A new approach for synthesis of cyclic poly(N-isopropylacrylamide), for applying in biomaterial applications. Polym. Bull. 81, 929–949 (2024). https://doi.org/10.1007/s00289-023-04741-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04741-5

Keywords

Navigation