Skip to main content

Copper(II)-Catalyzed Ring Opening Polymerization of Cyclic Esters

  • Conference paper
  • First Online:
Polymeric Biomaterials and Bioengineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 224 Accesses

Abstract

Cu(II)-catalyzed synthesis of low-molecular weight linear and hyperbranched polyesters at ambient temperature. Biodegradable polyesters are biohybrid materials, which have been widely used in various fields such as tissue engineering and regenerative medicines. Particularly, the low-molecular weight biodegradable polymers have received attention in medical applications as materials for molecular engineering. Controlled/living ring opening polymerization (ROP) of cyclic esters is the most efficient method for the synthesis of polyesters of desired molecular weight. Herein, we describe copper perchlorate hexahydrate (Cu(ClO4)2·6H2O)-catalyzed synthesis of poly(ϵ-caprolactone) (PCL) and poly(δ-valerolactone) (PVL) under solvent-free conditions at room temperature, in the presence of benzyl alcohol, 1,5-pentandiol and propargyl alcohol as external initiators. In addition, star-shaped PCL and PVL have also been synthesized using pentaerythritol and dipentaerythritol initiators. The polyesters were characterized by 1H NMR spectroscopy, gel permeation chromatography (GPC) and thermal analysis. Low-molecular weight polymers were obtained. The polymerization proceeds via an activated monomer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48(1):11–63

    Article  CAS  Google Scholar 

  2. Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. Polym Environ 19(3):637–676

    Google Scholar 

  3. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. J Polym Environ Stud 19(2):255–266

    Google Scholar 

  4. Williams CK, Hillmeyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48(1):1–10

    Article  CAS  Google Scholar 

  5. Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW (2020) Biodegradable polymers for gene-delivery applications. Int J Nanomedicine 15:2131–2150

    Article  CAS  Google Scholar 

  6. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12(24):3117–3145

    Google Scholar 

  7. Brannigan RP, Dove AP (2017) Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci 20(1):9–21

    Google Scholar 

  8. Jedrzkiewicz D, Czelusniak I, Wierzejewska M, Szafert S, Ejfler J (2015) Well-controlled, zinc-catalyzed synthesis of low molecular weight oligolactides by ring opening reaction. J Mol Catal A: Chem 396:155–163

    Article  CAS  Google Scholar 

  9. Lyubov DM, Tolpygin AO, Trifonov AA (2019) Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord Chem Rev 392:83–145

    Article  CAS  Google Scholar 

  10. Gao J, Zhu D, Zhang W, Solan G, Ma Y, Sun WH (2019) Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters. Inorg Chem Front 6(10):2619–2652

    Article  CAS  Google Scholar 

  11. Fazekas E, McIntosh RD (2020) Multinuclear catalysts for the ring-opening polymerisation of cyclic esters. Organometall Chem 43:63–82

    Article  Google Scholar 

  12. Chamberlain BM, Jazdzewski BA, Pink M, Hillmyer MA, Tolman WB (2000) Controlled polymerization of dl-lactide and ε-caprolactone by structurally well-defined alkoxo-bridged di- and triyttrium(III) complexes. Macromolecules 33(11):3970–3977

    Google Scholar 

  13. Nomura N, Taira A, Nakase A, Tomioka T, Okada M (2007) Ring-opening polymerization of lactones by rare-earth metal triflates and by their reusable system in ionic liquids. Tetrahedron 63(35):8478–8484

    Article  CAS  Google Scholar 

  14. Thibault M, Fontaine F (2010) Aluminium complexes bearing functionalized trisamido ligands and their reactivity in the polymerization of ε-caprolactone and rac-lactide. Dalton Trans 39(24):5688–5697

    Article  CAS  Google Scholar 

  15. Motala-Timol S, Bhaw-luximon A, Jhurry D (2005) Kinetic study of the Al-Schiff’s base initiated polymerization of ε-caprolactone and synthesis of graft poly(methylmethacrylate-b-caprolactone). Macromol Symp 231(1):69–80

    Article  Google Scholar 

  16. Jacobs C, Dubois P, Jerome R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 5. Synthesis and characterization of diblock copolymers based on poly-ε-caprolactone and poly(L,L or D,L) lactide by aluminum alkoxides. Macromolecules 24(11):3027–3034

    Google Scholar 

  17. Gowda RR, Chakraborty D (2010) Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J Mol Catal A: Chem 333(1):167–172

    Article  CAS  Google Scholar 

  18. Lahcini M, Schwarz G, Kricheldorf HR (2013) Bismuth halide-catalyzed polymerizationsof ε-caprolactone. J Polym Sci A: Polym Chem 46(22):7483–7490

    Article  Google Scholar 

  19. Lahcini M, Qayouh H, Yashiro T, Weidner SM, Kricheldorf HR (2011) Bismuth‐triflate‐catalyzed polymerizations of ε‐caprolactone. Macromol Chem Phys 212(6):583–591

    Google Scholar 

  20. Kricheldorf HR, Weidner SM (2021) Polymerization of l-lactide with SnCl2: a low toxic and eco-friendly catalyst. J Polym Environ 29(12):2504–2516

    Article  CAS  Google Scholar 

  21. Kunioka M, Wang Y, Onozawa S-Y (2003) Polymerization of poly(ε-caprolactone) using yttrium triflate. Polym J 35(5):422–429

    Article  CAS  Google Scholar 

  22. Hegea CS, Schiller SM (2014) Non-toxic catalysts for ring-opening polymerizations of biodegradable polymers at room temperature for biohybrid materials. Green Chem 16(3):1410–1416

    Article  Google Scholar 

  23. O’Keefe BJ, Breyfogle LE, Hillmyer MA, Tolman WB (2002) Mechanistic comparison of cyclic ester polymerizations by novel iron (III)-alkoxide complexes: single vs multiple site catalysis. J Am Chem Soc 124(16):4384–4393

    Article  Google Scholar 

  24. Gibson VC, Marshall EL, Navarro-Llobet D, White AJP, Williams DJ (2002) A well-defined iron (II) alkoxide initiator for the controlled polymerisation of lactide. J Chem Soc, Dalton Trans (23):4321–4322

    Google Scholar 

  25. Trollsås M, Hedrick JL (1998) Dendrimer-like star polymers. J Am Chem Soc 120(19):4644–4651

    Article  Google Scholar 

  26. Trollsås M, Hedrick JL, Mecerreyes D, Dubois P, Jérôme R, Ihre H, Hult A (1997) Versatile and controlled synthesis of star and branched macromolecules by dentritic initiation. Macromolecules 30(26):8508–8511

    Article  Google Scholar 

  27. Dong C-M, Qiu K-Y, Gu Z-W, Feng X-D (2001) Synthesis of star-shaped poly (ε-caprolactone)-b-poly(dl-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catalyst. Macromolecules 34(14):4691–4696

    Article  CAS  Google Scholar 

  28. Pahl P, Schwarzenböck C, Fabian AD, Herz AD, Soller BS, Jandl C, Rieger B (2017) Core-first synthesis of three-armed star-shaped polymers by rare earth metal-mediated group transfer polymerization. Macromolecules 50(17):6569–6576

    Article  CAS  Google Scholar 

  29. Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836

    Article  CAS  Google Scholar 

  30. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, Lau P-L, Irvine DJ (2015) Molecular differentiated initiator reactivity in the synthesis of poly (caprolactone)-based hydrophobic homopolymer and amphiphilic core corona star polymers. Molecules 20(11):20131–20145

    Article  CAS  Google Scholar 

  31. Wang T-L, Huang F-J, Lee S-W (2002) Preparation and characterization of star polymers with polyurethane cores using polycaprolactone triol. Polym Int 51(5):1348–1352

    Article  CAS  Google Scholar 

  32. Sanda F, Sanada H, Shibasaki Y, Endo T (2002) Star polymer synthesis from ε-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35(3):680–683

    Article  CAS  Google Scholar 

  33. Zhao Y, Shuai X, Chen C, Xi F (2003) Synthesis and characterization of star shaped poly(l-lactide)s initiated with hydroxyl-terminated poly(Amidoamine) (PAMAM-OH) dendrimers. Chem Mater 15(14):2836–2843

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payal Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, I., Malik, P. (2022). Copper(II)-Catalyzed Ring Opening Polymerization of Cyclic Esters. In: Gupta, B., Jawaid, M., Kaith, B.S., Rattan, S., Kalia, S. (eds) Polymeric Biomaterials and Bioengineering. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1084-5_8

Download citation

Publish with us

Policies and ethics