Skip to main content
Log in

Hybrid cross-linked nanocomposite hydrogels based on Elaeagnus angustifolia gum: effect of clay content on water uptake and gel characteristics

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The hydrogels prepared using natural sources are of great importance in various applications due to their biodegradable and biocompatible features. In this work, a novel nanocomposite hydrogel based on the Gum extracted from Elaeagnus angustifolia was prepared and characterized. Graft copolymerization of Acrylic acid (AA) and Acrylamide (AAm) monomers was done on the polysaccharide chains of E. angustifolia Gum (EAG). To improve the physical and mechanical properties of the synthesized hydrogel, Cloisite 15A was used in different amounts as additive and physical cross-linking agent. The prepared hydrogels based on EAG polysaccharides were chemically and structurally characterized by FTIR spectroscopy, XRD analysis and SEM images. Incorporation of Cloisite 15A altered the porosity and network structure of the hydrogels-based EAG by acting as a physical cross-linker. So, the hydrogel containing Cloisite 15A showed improved water absorption and mechanical properties. Also, it was observed that the nanocomposite hydrogels have better performance in solutions with various pH values and saline solutions. The rheological studies showed that by the application of 3% wt of Cloisite 15A, the gel characteristics of the nanocomposite hydrogel are enhanced due to the optimum density of physical cross-linking in hydrogel structure. Accordingly, due to the natural source and proper physicochemical properties, the prepared hydrogel can be potentially used as water reservoir system in various agricultural and hygienic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang Y, Zeng M, Feng Z, Yin D, Xu Q, Fan L (2016) Graphene oxide-based composite hydrogels with self-assembled macroporous structures. RSC Adv 6(5):3561–3570

    Article  CAS  Google Scholar 

  2. Jiang H, Zhang G, Feng X, Liu H, Li F, Wang M, Li H (2017) Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium hydroxide nanoparticles. Compos Sci Technol 140:54–62

    Article  CAS  Google Scholar 

  3. Hezari S, Olad A, Dilmaghani A (2022) Modified gelatin/iron-based metal-organic framework nanocomposite hydrogel as wound dressing: Synthesis, antibacterial activity, and Camellia sinensis release. Int J Biol Macromol 218:488–505

    Article  CAS  PubMed  Google Scholar 

  4. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhanitabar A (2018) Synthesis, characterization, and swelling kinetic study of porous superabsorbent hydrogel nanocomposite based on sulfonated carboxymethylcellulose and silica nanoparticles. J Porous Mater 25(5):1325–1335

    Article  CAS  Google Scholar 

  5. Olad A, Zebhi H, Salari D, Mirmohseni A, Tabar AR (2018) Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater Sci Eng C 90:333–340

    Article  CAS  Google Scholar 

  6. Olad A, Doustdar F, Gharekhani H (2018) Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: preparation and swelling kinetic study. Carbohyd Polym 200:516–528

    Article  CAS  Google Scholar 

  7. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J 65:252–267

    Article  Google Scholar 

  8. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohyd Polym 168:320–326

    Article  CAS  Google Scholar 

  9. Kaczmarek B, Nadolna K, Owczarek A (2020) The physical and chemical properties of hydrogels based on natural polymers. Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 151–172

    Book  Google Scholar 

  10. Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi MA (2021) Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Adv Healthc Mater 10(3):2001571

    Article  CAS  Google Scholar 

  11. Olad A, Pourkhiyabi M, Gharekhani H, Doustdar F (2018) Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohyd Polym 190:295–306

    Article  CAS  Google Scholar 

  12. Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2016) Study on the synergistic effect of clinoptilolite on the swelling kinetic and slow release behavior of maize bran-based superabsorbent nanocomposite. J Polym Res 23(12):241

    Article  Google Scholar 

  14. Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R (2021) Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review. Eur Polymer J 145:110176

    Article  Google Scholar 

  15. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    Article  CAS  Google Scholar 

  16. Su X, Mahalingam S, Edirisinghe M, Chen B (2017) Highly stretchable and highly resilient polymer–clay nanocomposite hydrogels with low hysteresis. ACS Appl Mater Interfaces 9(27):22223–22234

    Article  CAS  PubMed  Google Scholar 

  17. Alam A, Zhang Y, Kuan H-C, Lee S-H, Ma J (2018) Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance. Prog Polym Sci 77:1–18

    Article  CAS  Google Scholar 

  18. Kaneko D, Tada T, Kurokawa T, Gong JP, Osada Y (2005) Mechanically strong hydrogels with ultra-low frictional coefficients. Adv Mater 17(5):535–538

    Article  CAS  Google Scholar 

  19. Gharekhani H, Olad A, Mirmohseni A, Bybordi A (2017) Superabsorbent hydrogel made of NaAlg-g-poly (AA-co-AAm) and rice husk ash: synthesis, characterization, and swelling kinetic studies. Carbohyd Polym 168:1–13

    Article  CAS  Google Scholar 

  20. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1(25):7433–7443

    Article  CAS  Google Scholar 

  21. Li J, Suo Z, Vlassak JJ (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2(39):6708–6713

    Article  PubMed  Google Scholar 

  22. Kumar A, Suman SK (2017) Experimental investigations on nanoclay (Cloisite-15A) modified bitumen. World Acad Sci Eng Technol Int J Civ Environ Struct Constr Archit Eng 11(2):172–177

    Google Scholar 

  23. Chardron S, Bruzaud S, Lignot B, Elain A, Sire O (2010) Characterization of bionanocomposites based on medium chain length polyhydroxyalkanoates synthesized by Pseudomonas oleovorans. Polym Test 29(8):966–971

    Article  CAS  Google Scholar 

  24. Natarajan P, Sasikumar B, Elakkiya S, Arthanareeswaran G, Ismail A, Youravong W, Yuliwati E (2021) Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation. J Nat Gas Sci Eng 86:103720

    Article  CAS  Google Scholar 

  25. Zhang Q, Liu X, Ren X, Duan L, Gao G (2018) Adenine-mediated adhesive and tough hydrogel based on hybrid crosslinking. Eur Polymer J 106:139–147

    Article  CAS  Google Scholar 

  26. Yilmaz E, Kaya GG, Deveci H (2018) Preparation and characterization of pH-sensitive semi-interpenetrating network hybrid hydrogels with sodium humate and kaolin. Appl Clay Sci 162:311–316

    Article  CAS  Google Scholar 

  27. Stagnaro P, Schizzi I, Utzeri R, Marsano E, Castellano M (2018) Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohyd Polym 185:56–62

    Article  CAS  Google Scholar 

  28. Tehranizadeh ZA, Baratian A, Hosseinzadeh H (2016) Russian olive (Elaeagnus angustifolia) as a herbal healer. Bioimpacts 6(3):155

    Article  CAS  Google Scholar 

  29. Ahmadiani A, Hosseiny J, Semnanian S, Javan M, Saeedi F, Kamalinejad M, Saremi S (2000) Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. J Ethnopharmacol 72(1–2):287–292

    Article  CAS  PubMed  Google Scholar 

  30. Mittal H, Ray SS, Okamoto M (2016) Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol Mater Eng 301(5):496–522

    Article  CAS  Google Scholar 

  31. Olad A, Eslamzadeh M, Katiraee F, Mirmohseni A (2020) Evaluation of in vitro anti-fungal properties of allicin loaded ion cross-linked poly (AA-co-AAm)/PVA/Cloisite 15A nanocomposite hydrogel films as wound dressing materials. J Polym Res 27(4):1–10

    Article  Google Scholar 

  32. Olad A, Eslamzadeh M, Mirmohseni A (2019) Ion crosslinked poly (acrylic acid-co-acrylamide)/poly (vinyl alcohol)/Cloisite 15 A nanocomposite hydrogels as potential wound dressing films: effect of clay content on water absorption kinetic and mechanical properties. Polym Compos 40(5):1762–1773

    Article  CAS  Google Scholar 

  33. Masaro L, Zhu X (1999) Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci 24(5):731–775

    Article  CAS  Google Scholar 

  34. Zheng Y-F, Zhang Q, Liu X-M, Ma L, Lai F (2016) Extraction of polysaccharides and its antitumor activity on Magnolia kwangsiensis Figlar & Noot. Carbohyd Polym 142:98–104

    Article  CAS  Google Scholar 

  35. Rezaei A, Nasirpour A, Tavanai H (2016) Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocoll 60:461–469

    Article  CAS  Google Scholar 

  36. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84(1):76–82

    Article  CAS  Google Scholar 

  37. Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105(5):2631–2639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work by the University of Tabriz is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olad, A., Allami, Z., Hejazi, M.J. et al. Hybrid cross-linked nanocomposite hydrogels based on Elaeagnus angustifolia gum: effect of clay content on water uptake and gel characteristics. Polym. Bull. 81, 351–372 (2024). https://doi.org/10.1007/s00289-023-04717-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04717-5

Keywords

Navigation