Skip to main content
Log in

Adsorption of lead and tetracycline in aqueous solution by magnetic biomimetic bone composite

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Heavy metals and antibiotics wastewater are toxic, harmful, and have become a serious threat to human health. Here, we designed and synthesized novel biomimetic bone composites PMCH and FS@PMCH for the removal of heavy metals and antibiotics from wastewater. The pseudo-second-order and Langmuir models fitted well with the kinetic and isothermal adsorption data, respectively. Under the optimal experimental conditions (the pH of 5 and the temperature of 298.15 K), the theoretical saturated adsorption capacities for Pb (II) and TC were 377.01 mg g−1 and 99.54 mg g−1. The XPS results confirmed that the adsorption mechanism of PMCH and FS@PMCH on Pb (II) and TC was mainly electrostatic interaction and H-bond, followed by ion exchange, complexation, and pore filling. Therefore, the FS@PMCH is a potential adsorbent and purifier for Pb (II)- and TC-contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rong NN, Chen CC, Ouyang KW, Zhang KJ, Wang XR, Xu ZY (2021) Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep Purif Technol 274:13. https://doi.org/10.1016/j.seppur.2021.119120

    Article  CAS  Google Scholar 

  2. Alsaiari NS, Amari A, Katubi KM, Alzahrani FM, Ben Rebah F, Tahoon MA (2021) Innovative magnetite based polymeric nanocomposite for simultaneous removal of methyl orange and hexavalent chromium from water. Processes 9:15. https://doi.org/10.3390/pr9040576

    Article  CAS  Google Scholar 

  3. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  PubMed  Google Scholar 

  4. Dai CM, Li S, Duan YP, Leong KH, Tu Y, Zhou L (2021) Human health risk assessment of selected pharmaceuticals in the five major river basins. China Sci Total Environ 801:13. https://doi.org/10.1016/j.scitotenv.2021.149730

    Article  CAS  Google Scholar 

  5. Cuprys A, Maletskyi Z, Rouissi T, Ratnaweera H, Brar SK, Knystautas E, Drogui P (2021) Insights into the simultaneous sorption of ciprofloxacin and heavy metals using functionalized biochar. Water 13:20. https://doi.org/10.3390/w13192768

    Article  CAS  Google Scholar 

  6. Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44. https://doi.org/10.1016/j.tibtech.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Ding XY, Liu YL, Chen X, Liu WJ, Li J (2021) Simultaneous removal of antibiotics and heavy metals with poly(aspartic acid)-based Fenton micromotors. Chem-Asian J 16:1930–1936. https://doi.org/10.1002/asia.202100448

    Article  CAS  PubMed  Google Scholar 

  8. Pan J, Zhu JW, Cheng FL (2021) Preparation of sodium lignosulfonate/chitosan adsorbent and application of Pb2+ treatment in water. Sustainability 13:13. https://doi.org/10.3390/su13052997

    Article  CAS  Google Scholar 

  9. Dev VV, Baburaj G, Antony S, Arun V, Krishnan KA (2020) Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J Cleaner Prod 255:20. https://doi.org/10.1016/j.jclepro.2020.120309

    Article  CAS  Google Scholar 

  10. Salehi N, Moghimi A, Shahbazi H (2020) Preparation of cross-linked magnetic chitosan with methionine-glutaraldehyde for removal of heavy metals from aqueous solutions. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1753718

    Article  Google Scholar 

  11. Peralta ME, Nistico R, Franzoso F, Magnacca G, Fernandez L, Parolo ME, Leon EG, Carlos L (2019) Highly efficient removal of heavy metals from waters by magnetic chitosan-based composite. Adsorpt J Int Adsorpt Soc 25:1337–1347. https://doi.org/10.1007/s10450-019-00096-4

    Article  CAS  Google Scholar 

  12. Yang WX, Cheng MJ, Han Y, Luo XL, Li CH, Tang WZ, Yue TL, Li ZH (2021) Heavy metal ions’ poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice. J Hazard Mater 401:11. https://doi.org/10.1016/j.jhazmat.2020.123318

    Article  CAS  Google Scholar 

  13. Wang Y, Zhou RS, Wang CZ, Zhou GZ, Hua CY, Cao YY, Song ZZ (2020) Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. J Alloy Compd 817:13. https://doi.org/10.1016/j.jallcom.2019.153286

    Article  CAS  Google Scholar 

  14. Ge HC, Hua TT (2016) Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydr Polym 153:246–252. https://doi.org/10.1016/j.carbpol.2016.07.110

    Article  CAS  PubMed  Google Scholar 

  15. Liang LP, Xi FF, Tan WS, Meng X, Hu BW, Wang XK (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281. https://doi.org/10.1007/s42773-021-00101-6

    Article  CAS  Google Scholar 

  16. Yu SJ, Pang HW, Huang SY, Tang H, Wang SQ, Qiu MQ, Chen ZS, Yang H, Song G, Fu D, Hu BW, Wang XX (2021) Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 800:22. https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  Google Scholar 

  17. Li Q, Chen ZS, Wang HH, Yang H, Wen T, Wang SQ, Hu BW, Wang XK (2021) Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci Total Environ 792:17. https://doi.org/10.1016/j.scitotenv.2021.148546

    Article  CAS  Google Scholar 

  18. Lian ZW, Li YF, Xian HY, Ouyang XK, Lu YQ, Peng XW, Hu DL (2020) EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: synthesis, characterization, and Pb(II) adsorption performance. Int J Biol Macromol 165:591–600. https://doi.org/10.1016/j.ijbiomac.2020.09.156

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Gao M, Cao MB, Liu X, Yang HB, Li YS (2021) A series of novel carbohydrate-based carbon adsorbents were synthesized by self-propagating combustion for tetracycline removal. Bioresour Technol 332:8. https://doi.org/10.1016/j.biortech.2021.125059

    Article  CAS  Google Scholar 

  20. Maity S, Naskar N, Jana B, Lahiri S, Ganguly J (2021) Fabrication of thiophene-chitosan hydrogel-trap for efficient immobilization of mercury (II) from aqueous environs. Carbohydr Polym 251:9. https://doi.org/10.1016/j.carbpol.2020.116999

    Article  CAS  Google Scholar 

  21. Vatanpour V, Salehi E, Sahebjamee N, Ashrafi M (2020) Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab J Chem 13:1731–1740. https://doi.org/10.1016/j.arabjc.2018.01.010

    Article  CAS  Google Scholar 

  22. Shen C, Wang YJ, Xu JH, Luo GS (2013) Chitosan supported on porous glass beads as a new green adsorbent for heavy metal recovery. Chem Eng J 229:217–224. https://doi.org/10.1016/j.cej.2013.06.003

    Article  CAS  Google Scholar 

  23. Alves DCD, Healy B, Yu T, Breslin CB (2021) Graphene-based materials immobilized within chitosan: applications as adsorbents for the removal of aquatic pollutants. Materials 14:30. https://doi.org/10.3390/ma14133655

    Article  CAS  Google Scholar 

  24. Varaprasad K, Nunez D, Yallapu MM, Jayaramudu T, Elgueta E, Oyarzun P (2018) Nano-hydroxyapatite polymeric hydrogels for dye removal. RSC Adv 8:18118–18127. https://doi.org/10.1039/c8ra01887a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du JJ, Gan SC, Bian QH, Fu DH, Wei Y, Wang KQ, Lin QX, Chen WY, Huang D (2018) Preparation and characterization of porous hydroxyapatite/-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. J Biomater Appl 33:402–409. https://doi.org/10.1177/0885328218797545

    Article  CAS  PubMed  Google Scholar 

  26. Wong SM, Zulkifli MZA, Nordin D, Teow YH (2021) Synthesis of Cellulose/Nano-hydroxyapatite composite hydrogel absorbent for removal of heavy metal ions from palm oil mill effluents. J Polym Environ 29:4106–4119. https://doi.org/10.1007/s10924-021-02183-6

    Article  CAS  Google Scholar 

  27. Huang BY, Liu YG, Li B, Liu SB, Zeng GM, Zeng ZW, Wang XH, Ning QM, Zheng BH, Yang CP (2017) Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite. Carbohydr Polym 157:576–585. https://doi.org/10.1016/j.carbpol.2016.10.025

    Article  CAS  PubMed  Google Scholar 

  28. Zheng XY, Zheng HL, Zhou YH, Sun YJ, Zhao R, Liu YZ, Zhang SX (2019) Enhanced adsorption of Orange G from aqueous solutions by quaternary ammonium group-rich magnetic nanoparticles. Colloid Surf A-Physicochem Eng Asp 580:9. https://doi.org/10.1016/j.colsurfa.2019.123746

    Article  CAS  Google Scholar 

  29. Roto R, Yusran Y, Kuncaka A (2016) Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Appl Surf Sci 377:30–36. https://doi.org/10.1016/j.apsusc.2016.03.099

    Article  CAS  Google Scholar 

  30. Cheng JJ, Tan GH, Li WT, Zhang HY, Wu XD, Wang ZQ, Jin YX (2016) Facile synthesis of chitosan assisted multifunctional magnetic Fe3O4@SiO2@CS@pyropheophorbide-a fluorescent nanoparticles for photodynamic therapy. New J Chem 40:8522–8534. https://doi.org/10.1039/c6nj01765g

    Article  CAS  Google Scholar 

  31. Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299. https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  32. Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@Layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077. https://doi.org/10.1021/ja2086323

    Article  CAS  PubMed  Google Scholar 

  33. Liu YH, Zhou YM, Yao QZ, Sun W (2015) Evaluating the performance of PEG-based scale inhibition and dispersion agent in cooling water systems. Desalin Water Treat 56:1309–1320. https://doi.org/10.1080/19443994.2014.944220

    Article  CAS  Google Scholar 

  34. Liu YC, Yeh IC (2017) Using mixture design and neural networks to build stock selection decision support systems. Neural Comput Appl 28:521–535. https://doi.org/10.1007/s00521-015-2090-x

    Article  Google Scholar 

  35. Lin XY, Liu J, Wan S, He X, Cui LZ, Wu GP (2019) A novel strategy for Cr(VI) removal from aqueous solution via CYPH@IL101/chitosan capsule. Int J Biol Macromol 136:35–47. https://doi.org/10.1016/j.ijbiomac.2019.05.125

    Article  CAS  PubMed  Google Scholar 

  36. Zheng LW, Gao YC, Du JH, Zhang W, Huang YJ, Wang LL, Zhao QQ, Pan XL (2020) A novel, recyclable magnetic biochar modified by chitosan-EDTA for the effective removal of Pb(II) from aqueous solution. RSC Adv 10:40196–40205. https://doi.org/10.1039/d0ra07499c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang J, Long YC, Hu XJ, Hu J, Zhu MS, Zhou SQ (2020) A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J Solid State Chem 289:9. https://doi.org/10.1016/j.jssc.2020.121491

    Article  CAS  Google Scholar 

  38. Wijesinghe W, Mantilaka M, Peiris TAN, Rajapakse RMG, Wijayantha KGU, Pitawala H, Premachandra TN, Herath H, Rajapakse R (2018) Preparation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. New J Chem 42:10271–10278. https://doi.org/10.1039/c8nj00673c

    Article  CAS  Google Scholar 

  39. Zhang BL, Yu HY, Wang JQ, Chen X, Zhang HP, Zhang QY (2018) Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. J Alloy Compd 735:1986–1996. https://doi.org/10.1016/j.jallcom.2017.11.349

    Article  CAS  Google Scholar 

  40. Guo XY, Mao FF, Wang WJ, Yang Y, Bai ZM (2015) Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in vitro. ACS Appl Mater Interfaces 7:14983–14991. https://doi.org/10.1021/acsami.5b03873

    Article  CAS  PubMed  Google Scholar 

  41. Zheng XY, Zheng HL, Xiong ZK, Zhao R, Liu YZ, Zhao C, Zheng CF (2020) Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chem Eng J 392:15. https://doi.org/10.1016/j.cej.2019.123706

    Article  CAS  Google Scholar 

  42. Fan XB, Wang XH, Cai YT, Xie HH, Han SQ, Hao C (2022) Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2+ and MB. J Hazard Mater 423:13. https://doi.org/10.1016/j.jhazmat.2021.127191

    Article  CAS  Google Scholar 

  43. Li SS, Wang XL, An QD, Xiao ZY, Zhai SR, Cui L, Li ZC (2020) Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd(II) and Cr(VI) from water. Int J Biol Macromol 143:640–650. https://doi.org/10.1016/j.ijbiomac.2019.12.053

    Article  CAS  PubMed  Google Scholar 

  44. Ren Y, Abbood HA, He FB, Peng H, Huang KX (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311. https://doi.org/10.1016/j.cej.2013.04.059

    Article  CAS  Google Scholar 

  45. Le VT, Dao MU, Le HS, Tran DL, Doan VD, Nguyen HT (2020) Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared from spent coffee grounds, shrimp shells and green tea extract. Environ Technol 41:2817–2832. https://doi.org/10.1080/09593330.2019.1584250

    Article  CAS  PubMed  Google Scholar 

  46. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  47. Arshad F, Selvaraj M, Zain J, Banat F, Abu Haija M (2019) Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep Purif Technol 209:870–880. https://doi.org/10.1016/j.seppur.2018.06.035

    Article  CAS  Google Scholar 

  48. Li M, Zhang SQ, Cui SY, Qin KX, Zhang YL, Li P, Cao QY, Xiao HN, Zeng QD (2021) Pre-grafting effect on improving adsorption efficiency of cellulose based biosorbent for Hg (II) removal from aqueous solution. Sep Purif Technol 277:12. https://doi.org/10.1016/j.seppur.2021.119493

    Article  CAS  Google Scholar 

  49. Shan SJ, Zhang T, Wang W, Liu DM, Shi WX, Cui FY (2021) Magnetite/hydrated cerium(III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation. Chem Eng J 425:13. https://doi.org/10.1016/j.cej.2021.128894

    Article  CAS  Google Scholar 

  50. Al-Abbad E, Alakhras F, Anastopoulos I, Das D, Al-Arfaj A, Ouerfelli N, Hosseini-Bandegharaei A (2020) Chitosan-based materials for the removal of nickel ions from aqueous solutions. Russ J Phys Chem A 94:748–755. https://doi.org/10.1134/s0036024420040032

    Article  CAS  Google Scholar 

  51. Zhang XN, Lin XY, He Y, Chen Y, Luo XG, Shang R (2019) Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int J Biol Macromol 124:418–428. https://doi.org/10.1016/j.ijbiomac.2018.11.218

    Article  CAS  PubMed  Google Scholar 

  52. Alkizwini RS, Alquzweeni SS (2021) Modeling natural bentonite, thermal-modified bentonite and iron-modified bentonite with artificial neural network, sorption kinetics and sorption isotherms for simulated sorption tetracycline. Int J Environ Sci Technol 18:2633–2650. https://doi.org/10.1007/s13762-020-03004-4

    Article  CAS  Google Scholar 

  53. Chen WQ, Xing JL, Lu ZH, Wang J, Yu SJ, Yao W, Asiri AM, Alamry KA, Wang XK, Wang SH (2018) Citrate-modified Mg–Al layered double hydroxides for efficient removal of lead from water. Environ Chem Lett 16:561–567. https://doi.org/10.1007/s10311-017-0692-5

    Article  CAS  Google Scholar 

  54. Wen L, Zhang YM, Liu CB, Tang YH (2020) All-biomass double network gel: highly efficient removal of Pb2+ and Cd2+ in wastewater and utilization of spent adsorbents. J Polym Environ 28:2669–2680. https://doi.org/10.1007/s10924-020-01806-8

    Article  CAS  Google Scholar 

  55. Zhu JH, Shu JC, Yue XJ, Su YP (2020) Hollow and porous octacalcium phosphate superstructures mediated by the polyelectrolyte PSS: a superior removal capacity for heavy metal and antibiotics. J Mater Sci 55:7502–7517. https://doi.org/10.1007/s10853-020-04539-0

    Article  CAS  Google Scholar 

  56. Minale M, Gu ZL, Guadie A, Li Y, Wang Y, Meng Y, Wang XJ (2021) Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water. Chemosphere 272:12. https://doi.org/10.1016/j.chemosphere.2021.129902

    Article  CAS  Google Scholar 

  57. He X, Zhang YX, Shen MC, Tian Y, Zheng KX, Zeng GM (2017) Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost. Environ Sci Pollut Res 24:8375–8384. https://doi.org/10.1007/s11356-017-8529-0

    Article  CAS  Google Scholar 

  58. Mandal S, Pu SY, He LL, Ma H, Hou DY (2020) Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environ Pollut 259:14. https://doi.org/10.1016/j.envpol.2019.113851

    Article  CAS  Google Scholar 

  59. Jiang XY, Wang HQ, Hu EM, Lei ZW, Fan BL, Wang QL (2020) Efficient adsorption of uranium from aqueous solutions by microalgae based aerogel. Microporous Mesoporous Mater 305:8. https://doi.org/10.1016/j.micromeso.2020.110383

    Article  CAS  Google Scholar 

  60. Ji LL, Chen W, Bi J, Zheng SR, Xu ZY, Zhu DQ, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719. https://doi.org/10.1002/etc.350

    Article  CAS  PubMed  Google Scholar 

  61. Tang L, Fang Y, Pang Y, Zeng GM, Wang JJ, Zhou YY, Deng YC, Yang GD, Cai Y, Chen J (2014) Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline-magnetic mesoporous silica composite. Chem Eng J 254:302–312. https://doi.org/10.1016/j.cej.2014.05.119

    Article  CAS  Google Scholar 

  62. Wei XF, Chen SC, Rong JJ, Sui ZX, Wang SJ, Lin YB, Xiao JH, Huang DW (2021) Improving the Ca(II) adsorption of chitosan via physical and chemical modifications and charactering the structures of the calcified complexes. Polym Test 98:12. https://doi.org/10.1016/j.polymertesting.2021.107192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [No.2019YFC1711300]; the Natural Science Foundation of Anhui Province [No.1808085QH289]; the Key Project of Natural Science Research of Anhui Universities [No. KJ2020A0432]; and the Quality Project of Higher Education in Anhui Province [No. 2020xfxm35].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huchuan Wang or Chuanrun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 274 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Zhang, Y., Yan, H. et al. Adsorption of lead and tetracycline in aqueous solution by magnetic biomimetic bone composite. Polym. Bull. 81, 297–315 (2024). https://doi.org/10.1007/s00289-023-04715-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04715-7

Keywords

Navigation