Skip to main content

Advertisement

Log in

All-Biomass Double Network Gel: Highly Efficient Removal of Pb2+ and Cd2+ in Wastewater and Utilization of Spent Adsorbents

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Besides excellent adsorption performance of adsorbents, the disposal of spent adsorbents should be considered for environmental concern. In this study, a new all-biomass double network Jute/sodium alginate (Jute/SA) gel is prepared via the simple dripping technique. 80 wt% water of Jute/SA hydrogel endows the adsorbent with high permeability for heavy metal ions diffusion onto internal adsorption sites. The Jute/SA gel adsorbent can efficiently remove heavy metals from melting wastewater, especially Pb2+ and Cd2+. The adsorbent shows high adsorption capacities of 291.3 mg g−1 for Pb2+ and 149.9 mg g−1 for Cd2+ at 298 K. The adsorption equilibrium reaches within 45 min for 45 mg L−1 Cd2+ and Pb2+ using 1 g L−1 adsorbent, showing 98% removal efficiency of Pb2+ and Cd2+. Moreover, the removal efficiencies in 45 min reach up to 99.1% for Pb2+ (7.539 mg L−1) and 89.9% for Cd2+ (4.743 mg L−1) in actual melting effluent containing Zn (43.95 mg L−1), Cu (16.50 mg L−1), Mn (19.24 mg L−1), Ni (4.90 mg L−1) and Fe (33.75 mg L−1) using 1 g L−1 adsorbent. The concentrations of Pb and Cd decrease below 0.001 mg L−1 using 4 g L−1 adsorbent. Furthermore, the adsorption efficiencies for Pb2+ and Cd2+ remain above 95% in the tenth cycle, and the desorption efficiency is up to 99%. In addition, the spent Jute/SA gel was a good organic fertilizer for plant growth. This work develops an efficient and eco-friendly biomass adsorbent for the removal of heavy metals in actual wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Y, Xiao T, Baveye P, Zhu J, Ning Z, Li H (2015) Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicol Environ Saf 112:122–131

    Article  CAS  Google Scholar 

  2. Uddin M (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  3. Shao P, Liang D, Yang L, Shi H, Xiong Z, Ding L, Yin X, Zhang K, Luo X (2020) Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: quantitative comparison and mechanistic insight. J Hazard Mater 387:121676

    Article  CAS  Google Scholar 

  4. Chitpong N, Husson S (2017) High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol 179:94–103

    Article  CAS  Google Scholar 

  5. Ihsanullah A, Al-Amer A, Laoui T, Al-Marri M, Nasser M, Khraisheh M, Atieh M (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Article  CAS  Google Scholar 

  6. Kyzas G, Bomis G, Kosheleva R, Efthimiadou E, Favvas E, Kostoglou M, Mitropoulos A (2019) Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem Eng J 356:91–97

    Article  CAS  Google Scholar 

  7. Liu D, Li Z, Li W, Zhong Z, Xu J, Ren J, Ma Z (2013) Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind Eng Chem Res 52:11036–11044

    Article  CAS  Google Scholar 

  8. Loganathan P, Shim W, Sounthararajah D, Kalaruban M, Nur T, Vigneswaran S (2018) Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. Environ Sci Pollut Res 25:16664–16675

    Article  CAS  Google Scholar 

  9. Bumanis G, Novais R, Carvalheiras J, Bajare D, Labrincha J (2019) Metals removal from aqueous solutions by tailored porous waste-based granulated alkali-activated materials. Appl Clay Sci 179:105147

    Article  CAS  Google Scholar 

  10. Shao P, Ding L, Luo J, Luo Y, You D, Zhang Q, Luo X (2019) Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: A combined experimental and theoretical study. ACS Appl Mater Interfaces 11:29736–29745

    Article  CAS  Google Scholar 

  11. Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582

    Article  CAS  Google Scholar 

  12. Anastopoulos I, Robalds A, Nguyen Tran H, Mitrogiannis D, Giannakoudaki D, Hosseini-Bandegharaei A, Dotto G (2019) Removal of heavy metals by leaves-derived biosorbents. Environ Chem Lett 17:755–766

    Article  CAS  Google Scholar 

  13. Lai Y, Chang Y, Chen M, Lo Y, Lai J, Lee D (2016) Poly(vinyl alcohol and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour Technol 214:192–198

    Article  CAS  Google Scholar 

  14. Zhou G, Luo J, Liu C, Chu L, Crittenden J (2018) Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res 131:246–254

    Article  CAS  Google Scholar 

  15. Zhou G, Luo J, Liu C, Chu L, Ma J, Tang Y, Zeng Z, Luo S (2016) A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Res 89:151–160

    Article  CAS  Google Scholar 

  16. Rajamani M, Rajendrakumar K (2019) Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J Environ Manag 244:257–264

    Article  CAS  Google Scholar 

  17. Avetta P, Pensato A, Minella M, Malandrino M, Maurino V, Minero C, Hanna K, Vione D (2015) Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-fenton-like conditions. Environ Sci Technol 49:1043–1050

    Article  CAS  Google Scholar 

  18. Mu B, Zhong W, Dong Y, Du P, Liu P (2012) Encapsulation of drug microparticles with self-assembled Fe3O4/alginate hybrid multilayers for targeted controlled release. J Biomed Mater Res B 100:825–831

    Article  CAS  Google Scholar 

  19. Zhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Technol 219:451–457

    Article  CAS  Google Scholar 

  20. Yang P, Zhao J, Zhang L, Li L, Zhu Z (2015) Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots. Chem Eur J 21:8561–8568

    Article  CAS  Google Scholar 

  21. Chu L, Liu C, Zhou G, Xu R, Tang Y, Zeng Z, Luo S (2015) A double network gel as low cost and easy recycle adsorbent: highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater. J Hazard Mater 300:153–160

    Article  CAS  Google Scholar 

  22. Hadi P, Barford J, McKay G (2013) Toxic heavy metal capture using a novel electronic waste-based material—mechanism, modeling and comparison. Environ Sci Technol 47:8248–8255

    PubMed  CAS  Google Scholar 

  23. Petrus R, Warcho J (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res 39:819–830

    Article  CAS  Google Scholar 

  24. Phetphaisit C, Yuanyang S, Chaiyasith W (2016) Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater. J Hazard Mater 301:163–171

    Article  CAS  Google Scholar 

  25. Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) New double network hydrogel adsorbent: highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chem Eng J 275:179–188

    Article  CAS  Google Scholar 

  26. Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221:155–161

    Article  CAS  Google Scholar 

  27. Sounthararajah D, Loganathan P, Kandasamy J, Vigneswaran S (2015) Adsorptive removal of heavy metals from water using sodium titanate nanofibers loaded onto GAC in fixed-bed columns. J Hazard Mater 287:306–316

    Article  CAS  Google Scholar 

  28. El-Toni A, Habila M, Ibrahim M, Labis J, ALOthman Z (2014) Simple and facile synthesis of amino functionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–451

    Article  CAS  Google Scholar 

  29. Deng S, Wang P, Zhang G, Dou Y (2016) Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). J Hazard Mater 307:64–72

    Article  CAS  Google Scholar 

  30. Liang X, Xu Y, Sun G, Wang L, Sun Y, Sun Y, Qin X (2011) Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chem Eng J 174:436–444

    Article  CAS  Google Scholar 

  31. Liu D, Li Z, Zhu Y, Li Z, Kumar R (2014) Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: adsorption and desorption performance. Carbohydr Polym 111:469–476

    Article  CAS  Google Scholar 

  32. Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Y, Zheng B, Cai X (2016) Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6:5223–5232

    Article  CAS  Google Scholar 

  33. Cataldo S, Gianguzza A, Merli M, Muratore N, Piazzese D, Liveri M (2014) Experimental and robust modeling approach for Pb(II) uptake by alginate gel beads: Influence of the ionic strength and medium composition. J Colloid Interface Sci 434:77–88

    Article  CAS  Google Scholar 

  34. He J, Lu Y, Luo G (2014) Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    Article  CAS  Google Scholar 

  35. Sangi M, Shahmoradi A, Zolgharnein J, Azimi G, Ghorbandboost M (2008) Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J Hazard Mater 155:513–522

    Article  CAS  Google Scholar 

  36. Zhou G, Liu C, Tang Y, Luo S, Zeng Z, Liu Y, Xu R, Chu L (2015) Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chem Eng J 280:275–282

    Article  CAS  Google Scholar 

  37. Wu N, Li Z (2013) Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chem Eng J 215–216:894–902

    Article  CAS  Google Scholar 

  38. Srivastava S, Agrawal S, Mondal M (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22:15386–15415

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51778218), the Science and Technology Innovation Plan of Hunan Province (2019JJ10001, 2020JJ7036, 2017SK2420 and 2019RS3015) and Hunan Provincial Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions (HND2018005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengbin Liu or Yanhong Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Zhang, Y., Liu, C. et al. All-Biomass Double Network Gel: Highly Efficient Removal of Pb2+ and Cd2+ in Wastewater and Utilization of Spent Adsorbents. J Polym Environ 28, 2669–2680 (2020). https://doi.org/10.1007/s10924-020-01806-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01806-8

Keywords

Navigation