Skip to main content
Log in

Effect of particle sizes on physical, thermal and mechanical behavior of a hybrid composite with polymer matrix with raffia vinifera cork and Bambusa vulgaris

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The objective of this work is to realize and characterize physically, thermally and mechanically hybrid particleboard made of raffia vinifera and Bambusa vulgaris. This realization used urea formaldehyde as a binder. Particles are obtained by grounding row materials by hammer mills and sieved to obtain three particle sizes. Two reinforcement rates were used to make particleboard by contact molding. Samples obtained are dried at room temperature for a week before submitted to tests. Apparent density and absorption rate were determined by gravimetric method. Value of density allows the particleboards obtained to be classified as light materials. Values of water absorption rate show that the particleboards do not absorb as much water as each material taken separately. Asymmetric hot plane method was used to determine the thermal effusivity and conductivity of the particleboards. Values obtained allow to say that the composite obtained can be classified among the insulating materials with a thermal conductivity lower than the unit. Young’s modulus of particleboards was determined by three-point bending test. Results show that the particleboards obtained are less rigid than the Bambusa vulgaris in its raw state. According to results, these materials can be used as insulation materials in the building and interior vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2(2):148–173. https://doi.org/10.1039/b809990c

    Article  CAS  Google Scholar 

  2. Nordell B (2003) Thermal pollution causes global warming. Glob Planet Change 38(3–4):305–312. https://doi.org/10.1016/S0921-8181(03)00113-9

    Article  Google Scholar 

  3. Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26(6):588–599. https://doi.org/10.1016/j.tplants.2021.02.011

    Article  CAS  PubMed  Google Scholar 

  4. Njeugna E, Sikame TNR, Drean J, Fokwa D, Harzallah O (2012) Mechanical characterization of raffia fibres from ‘Raphia vinifera’. Int J Mech Struct 3(1):1–17

    Google Scholar 

  5. Erakhrumen AA, Ogunsanwo OY (2009) Water absorption, anti-swell efficiency, and dimensional stability properties of neem seed oil treated wild grown Bambus vulgaris schrad. Ex J. C. Wendl. in Southwest Nigeria. BioRessources 4(4):1417–1429

    Article  CAS  Google Scholar 

  6. Mohmod AL (1993) Effects of age and height of three bamboo species on their machining properties. J Trop For Sci 5(4):528–535

    Google Scholar 

  7. Mohmod AL, Ariffin WTW, Ahmad F (1990) Anatomical features and mechanical properties of tree Malaysian bamboos. J Trop For Sci 2(3):227–234

    Google Scholar 

  8. Foadieng E, Talla PK, Fogue M (2019) Study of the mechanichal properties of raffia bamboo Vinifera L. Aracaceae. Rev Sci Tech For Environ du Bassin du Congo 12:12–21

    Google Scholar 

  9. Sikame TNR, Njeugna E, Fogue M, Drean JY, Fokwa D (2013) Study of water diffusion through raffia vinifera fibres of the stem from Bandjoun-Cameroon: case of drying kinetics. Res J Appl Sci Eng Technol 6(19):3547–3558

    Article  Google Scholar 

  10. Fujiyama RT, Clay A (2020) Effect of chemical treatment and length of raffia fiber (Raphia vinifera) on mechanical stiffening of polyester composites. Polymers 12(12):2899. https://doi.org/10.3390/polym12122899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu Y, He M, Zhu R, Zhang Y, Yu Y, Yu W (2018) Influence of dyieng treatment on the performance of bamboo-based fibre composites. J Trop For Sci 28(2):112–120

    Google Scholar 

  12. Rassiah K, Ahmad MMHM (2013) A review on mechanical properties of bamboo fiber reinforced polymer composite. Aust J Basic Appl Sci 7(8):247–253

    CAS  Google Scholar 

  13. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A 33(1):43–52. https://doi.org/10.1016/S1359-835X(01)00071-9

    Article  Google Scholar 

  14. Musset R (1933) Le raphia. Ann Georgr 42(236):190–193

    Google Scholar 

  15. Obahiagbon FI (2009) A review of the origin, morphology, cultivation, economic products, health and physiological implications of Raphia palm. Afr J Food Sci 3(13): 447–453 https://www.researchgate.net/publication/228366758 (Online)

  16. Etuk SE, Akpabio LE, Akpabio KE (2003) Investigation of Raphia hookeri trunk as a potential ceiling material for passively cooled building design. Ghana J Sci 43(1):3–7. https://doi.org/10.4314/gjs.v43i1.15894

    Article  Google Scholar 

  17. Sikame NRT, Njeugna E, Fogue M, Drean J-Y, Nzeukou A, Fokwa D (2014) Study of water absorption in raffia vinifera fibres from Bandjoun, Cameroon. Sci World J 2014:1–11. https://doi.org/10.1155/2014/912380

    Article  Google Scholar 

  18. Elenga RG, Dirras GF, Goma Maniongui J, Djemia P, Biget MP (2009) On the microstructure and physical properties of untreated raffia textilis fiber. Compos A Appl Sci Manuf 40(4):418–422. https://doi.org/10.1016/j.compositesa.2009.01.001

    Article  CAS  Google Scholar 

  19. Kankam CK (1997) Raffia palm-reinforced concrete beams. Mater Struct 30(5):313–316. https://doi.org/10.1007/BF02486356

    Article  CAS  Google Scholar 

  20. Kaur PJ (2018) Bamboo availability and utilization potential as a building material. For Res Eng Int J 2(5):240–242. https://doi.org/10.15406/freij.2018.02.00056

    Article  Google Scholar 

  21. Bahru T, Yulong D (2021) A review on bamboo resource in the African region: a call for. Int J For Res 2021:10–12

    Google Scholar 

  22. Bhalla R, Gupta S, Sudhakar S, Suresh P (2008) Bamboo as green alternative to concrete and steel for modern structures. J Environ Res Dev 3(2):362–370

    Google Scholar 

  23. Nurdiah EA (2016) The potential of bamboo as building material in organic shaped buildings. Procedia Soc Behav Sci 216:30–38. https://doi.org/10.1016/j.sbspro.2015.12.004

    Article  Google Scholar 

  24. Escamilla EZ, Habert G, Daza JC, Archilla H, Fernández JE, Trujillo D (2018) Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. Sustainability. https://doi.org/10.3390/su10093096

    Article  Google Scholar 

  25. Nfornkah BN, Rene K, Louis Z, Martin T, Cedric CD (2020) Bamboo diversity and carbon stocks of dominant species in different agro-ecological zones in Cameroon. Afr J Environ Sci Technol 14(October):290–300. https://doi.org/10.5897/AJEST2020.2871

    Article  Google Scholar 

  26. Shi SQ, Cai L, Weng Y, Wang D, Sun Y (2019) Comparative life-cycle assessment of water supply pipes made from bamboo vs. polyvinyl chloride. J Clean Prod 240:1–12

    Article  Google Scholar 

  27. Chaowana P (2013) Bamboo: an alternative raw material for wood and wood-based composites. J Mater Sci Res. https://doi.org/10.5539/jmsr.v2n2p90

    Article  Google Scholar 

  28. Papadopoulos AN, Hill CAS, Gkaraveli A, Ntalos GA, Karastergiou SP (2004) Bamboo chips (Bambusa vulgaris) as an alternative lignocellulosic raw material for particleboard manufacture. Holz als Roh - und Werkst 62(1):36–39. https://doi.org/10.1007/s00107-003-0447-9

    Article  CAS  Google Scholar 

  29. Anokye R, Bakar SE, Ratnansingam J, Awang BK (2016) Bamboo properties and suitability as a replacement for wood. Pertanika J Sch Res Rev 2(1):63–79. https://doi.org/10.13140/RG.2.1.1939.3048

    Article  Google Scholar 

  30. Nugroho N, Ando N (2001) Development of structural composite products made from bamboo II: fundamental properties of laminated bamboo lumber. J Wood Sci 47(3):237–242. https://doi.org/10.1007/BF01171228

    Article  Google Scholar 

  31. Kazuya O, Toru F, Naoya Y (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Ser A 48(4):199–204. https://doi.org/10.1299/jsmea.48.199

    Article  Google Scholar 

  32. Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos A Appl Sci Manuf 35(3):377–383. https://doi.org/10.1016/j.compositesa.2003.09.017

    Article  CAS  Google Scholar 

  33. Verma CS, Sharma NK, Chariar VM, Maheshwari S, Hada MK (2014) Comparative study of mechanical properties of bamboo laminae and their laminates with woods and wood based composites. Compos B Eng 60:523–530. https://doi.org/10.1016/j.compositesb.2013.12.061

    Article  CAS  Google Scholar 

  34. Liew FK, Hamdan S, Rahman MR, Rusop M (2017) Thermomechanical properties of jute/bamboo cellulose composite and its hybrid composites: the effects of treatment and fiber loading. Adv Mater Sci Eng 2017:1–10. https://doi.org/10.1155/2017/8630749

    Article  CAS  Google Scholar 

  35. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A Appl Sci Manuf 40(4):469–475. https://doi.org/10.1016/j.compositesa.2009.01.012

    Article  CAS  Google Scholar 

  36. Tripathi P, Yadav K (2017) Flexural & tensile strength of E-glass fiber/bamboo hybrid composite. Int Res J Eng Technol (IRJET) 4(5):2707–2709

    Google Scholar 

  37. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

    Article  CAS  Google Scholar 

  38. Kanitkar YM, Kulkarni AP, Wangikar KS (2017) Characterization of glass hybrid composite: a review. Mater Today Proc 4(9):9627–9630. https://doi.org/10.1016/j.matpr.2017.06.237

    Article  Google Scholar 

  39. Ali NH, Shihab SK, Mohamed MT (2022) Mechanical and physical characteristics of hybrid particles/fibers-polymer composites: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.02.614

    Article  Google Scholar 

  40. Tiaya Mbou E, Njeugna E, Kemajou A, Tagne Sikame NR, Ndapeu D (2017) Modelling of the water absorption kinetics and determination of the water diffusion coefficient in the pith of raffia vinifera of Bandjoun, Cameroon. Adv Mater Sci Eng 2017:1–12. https://doi.org/10.1155/2017/1953087

    Article  CAS  Google Scholar 

  41. Fokwa D, Ngapgue F, Mpessa M, Tamo Tatietse T (2012) Physical characterization of two cameroon bamboo species: Arundinaria alpina and Oxytenantera abyssinica. Int J Eng Technol 4(2):82–92

    Google Scholar 

  42. Damfeu JC, Meukam P, Jannot Y (2016) Modeling and estimation of the thermal properties of clusters aggregates for construction materials: the case of clusters aggregates of lateritic soil, sand and pouzzolan. Int J Heat Mass Transf 102:407–416. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.044

    Article  Google Scholar 

  43. Revel GM (2007) Measurement of the apparent density of green ceramic tiles by a non-contact ultrasonic method. Exp Mech 47(5):637–648. https://doi.org/10.1007/s11340-006-9032-6

    Article  CAS  Google Scholar 

  44. Afolabi TY, Agarry TJ, Tunde-Akintunde SE (2014) Modelling the water absorption characteristics of different maize (Zea Mays L.) types during soaking. Chem Process Eng Res 25:53–67

    Google Scholar 

  45. Cherki AB, Khabbazi A, Remy B, Baillis D (2013) Granular cork content dependence of thermal diffusivity, thermal conductivity and heat capacity of the composite material/granular cork bound with plaster. Energy Procedia 42:83–92. https://doi.org/10.1016/j.egypro.2013.11.008

    Article  Google Scholar 

  46. Cherki AB, Remy B, Khabbazi A, Jannot Y, Baillis D (2014) Experimental thermal properties characterization of insulating cork–gypsum composite. Constr Build Mater 54:202–209. https://doi.org/10.1016/j.conbuildmat.2013.12.076

    Article  Google Scholar 

  47. Wati E, Meukam P, Damfeu JC (2017) Modeling thermal performance of exterior walls retrofitted from insulation and modified laterite based bricks materials. Heat Mass Transf 53(12):3487–3499. https://doi.org/10.1007/s00231-017-2059-7

    Article  CAS  Google Scholar 

  48. Osseni SOG, Apovo BD, Ahouannou C (2016) Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température. Afrique Sci 12(6):119–129

    Google Scholar 

  49. Maillet D, André S, Degiovanni A (1993) Les erreurs sur la diffusivité thermique mesurée par méthode flash: confrontation théorie-expérience. J Phys III 3(4):883–809. https://doi.org/10.1051/jp3:1993170

    Article  CAS  Google Scholar 

  50. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  51. Alam DMN et al (2015) Properties of particleboard manufactured from commonly used bamboo (Bambusa vulgaris) wastes in Bangladesh. Adv Res 4(3):203–211. https://doi.org/10.9734/AIR/2015/15581

    Article  Google Scholar 

  52. Khazaei J (2008) Water absorption characteristics of three wood varieties. Agron Res Mold XLI(2):5–16

    Google Scholar 

  53. Huisken MPW, Tchemou G, Rodrigue N, Tagne S, Ndapeu D, Njeugna E (2022) Effect of the addition of oil palm mesocarp fibers on the physical and mechanical properties of a polyester matrix composite. Int J Polym Sci. https://doi.org/10.1155/2022/3399986

    Article  Google Scholar 

  54. FCBA (2008) Le guide des essences de bois

  55. Adefisan OO, McDonald AG (2019) Evaluation of the strength, sorption and thermal properties of bamboo plastic composites. Maderas Cienc y Tecnol 21(1):3–14. https://doi.org/10.4067/S0718-221X2019005000101

    Article  CAS  Google Scholar 

  56. Toguyeni DYK, Bathiebo JD, Koulidiati J (2011) Etude expérimentale, par la méthode du plan chaud, des propriétés thermophysiques d’un bois tropical et d’un panneau isolant formulé avec des intrants locaux. J Soc Ouest-Afr Chim 32:18–26

    Google Scholar 

  57. Damfeu JC, Meukam P, Jannot Y, Wati E (2017) Modelling and experimental determination of thermal properties of local wet building materials. Energy Build 135:109–118. https://doi.org/10.1016/j.enbuild.2016.11.022

    Article  Google Scholar 

  58. Sikame Tagne NR, Mbou TE, Harzallah O, Ndapeu D, Huisken W, Nkemaja D, Njeugna E, Fogue M, Drean J-Y (2020) Physicochemical and mechanical characterization of raffia vinifera Pith. Adv Mater Sci Eng. https://doi.org/10.1155/2020/8895913

    Article  Google Scholar 

  59. Bahari SA, Krause A (2016) Utilizing Malaysian bamboo for use in thermoplastic composites. J Clean Prod 110:16–24. https://doi.org/10.1016/J.JCLEPRO.2015.03.052

    Article  CAS  Google Scholar 

  60. Agoua E, Allognon-houessou E, Adjovi E, Togbedji B (2013) Thermal conductivity of composites made of wastes of wood and expanded polystyrene. Constr Build Mater 41:557–562. https://doi.org/10.1016/j.conbuildmat.2012.12.016

    Article  Google Scholar 

  61. Biswas S, Patnaik A, Kaundal R (2012) Effect of red mud and copper slag particles on physical and mechanical properties of bamboo-fiber-reinforced epoxy composites. Adv Mech Eng. https://doi.org/10.1155/2012/141248

    Article  Google Scholar 

  62. Biswas D, Kanti S, Hossain MM (2011) International journal of adhesion & adhesives physical and mechanical properties of urea formaldehyde-bonded particleboard made from bamboo waste. Int J Adhes Adhes 31:84–87. https://doi.org/10.1016/j.ijadhadh.2010.11.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis Mbou Tiaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbou Tiaya, E., Huisken Mejouyo, P.W., Ndema Ewane, P.A. et al. Effect of particle sizes on physical, thermal and mechanical behavior of a hybrid composite with polymer matrix with raffia vinifera cork and Bambusa vulgaris. Polym. Bull. 81, 275–295 (2024). https://doi.org/10.1007/s00289-023-04702-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04702-y

Keywords

Navigation