Skip to main content
Log in

Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymeric membranes have been commercially used in wastewater treatment and desalination. Polymeric membranes efficiency decreases with time due to fouling, thermal and mechanical instability, chemical degradation and also swelling phenomenon occurrence. Among polymers, sulfone-based polymers have been research interest of membrane manufacturers. However, their intrinsic hydrophobic nature causes fouling under aqueous filtration. Polymer nanocomposite membranes (PNMs) with improved properties and performance than polymeric membranes have attracted much attention all over the world. Size and type of nanofillers, degree of aggregation/dispersion, nanofillers quantity incorporated into the polymeric matrices and compatibility between polymers and nanofillers are the main factors that can considerably affect the PNMs performance and properties. Carbon nanotubes (CNTs) with unique physicochemical properties could be used to improve the PNMs performances in terms of permeability and antifouling properties. Also, it has been reported that by incorporation of CNTs in the polymer matrices, hydrophilicity/hydrophobicity, pore size, porosity, mechanical and thermal stability, surface charge, solute rejection, roughness and other physicochemical properties of the PNMs could be improved, significantly. Effective CNTs functionalization could lead to the improved PNMs characteristics. This article presents an overview of current progresses in fabrication and characterization of CNTs-based PNMs used in various membrane separation processes for water treatment applications with particular emphasis on their challenges and advances. Also, effects of CNTs and their functionalization on structure, performance and properties of the CNTs-based PNMs are deeply investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10:146

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zahid M, Rashid A, Akram S, Rehan Z, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8:1–20

    Google Scholar 

  3. Teow YH, Mohammad AW (2019) New generation nanomaterials for water desalination: a review. Desalination 451:2–17

    CAS  Google Scholar 

  4. Kalla S (2020) Use of membrane distillation for oily wastewater treatment—a review. J Environ Chem Eng 9:104641

    Google Scholar 

  5. Yang Z, Ma X-H, Tang CY (2018) Recent development of novel membranes for desalination. Desalination 434:37–59

    CAS  Google Scholar 

  6. Nagandran S, Goh PS, Ismail AF, Wong T-W, Binti Wan Dagang WRZ (2020) The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry 12:239

    CAS  Google Scholar 

  7. Abdullah N, Yusof N, Lau W, Jaafar J, Ismail A (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    CAS  Google Scholar 

  8. Hao S, Jia Z, Wen J, Li S, Peng W, Huang R et al (2021) Progress in adsorptive membranes for separation—a review. Sep Purif Technol 255:117772

    CAS  Google Scholar 

  9. Zhao S, Mao C, Wang T, Tian X, Qiao Z, Wang Z et al (2021) High-flux polyamide thin film nanofiltration membrane incorporated with metal-induced ordered microporous polymers. Sep Purif Technol 256:117817

    CAS  Google Scholar 

  10. Zhang M, Sun J, Mao Y, Liu G, Jin W (2019) Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. J Membr Sci 574:196–204

    CAS  Google Scholar 

  11. Benkhaya S, Lgaz H, Alrashdi AA, M’rabet S, El Bachiri A, Assouag M et al (2021) Upgrading the performances of polysulfone/polyetherimide ultrafiltration composite membranes for dyes removal: experimental and molecular dynamics studies. J Mol Liq 331:115743

    CAS  Google Scholar 

  12. Yu S-B, Lin F, Tian J, Yu J, Zhang D-W, Li Z-T (2022) Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chem Soc Rev 51:434–449

    CAS  PubMed  Google Scholar 

  13. Bhave R (2012) Inorganic membranes synthesis, characteristics and applications: synthesis, characteristics, and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  14. Warsinger DM, Chakraborty S, Tow EW, Plumlee MH, Bellona C, Loutatidou S et al (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81:209–237

    CAS  Google Scholar 

  15. Mavukkandy MO, McBride SA, Warsinger DM, Dizge N, Hasan SW, Arafat HA (2020) Thin film deposition techniques for polymeric membranes—a review. J Membr Sci 610:118258

    CAS  Google Scholar 

  16. Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability–selectivity analysis for ultrafiltration: effect of pore geometry. J Membr Sci 349:405–410

    CAS  Google Scholar 

  17. Shen L, Huang Z, Liu Y, Li R, Xu Y, Jakaj G et al (2020) Polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation: a brief review. Front Chem 8:224

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Camara HW, Doan H, Lohi A (2020) In-situ ultrasound-assisted control of polymeric membrane fouling. Ultrasonics 108:106206

    CAS  PubMed  Google Scholar 

  19. Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J et al (2019) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep Purif Technol 213:465–499

    CAS  Google Scholar 

  20. Mirzaei M, Mohammadi T, Kasiri N, Tofighy MA (2021) Fabrication of magnetic field induced mixed matrix membranes containing GO/Fe3O4 nanohybrids with enhanced antifouling properties for wastewater treatment applications. J Environ Chem Eng 9:105675

    CAS  Google Scholar 

  21. Căprărescu S, Modrogan C, Purcar V, Dăncilă AM, Orbuleț OD (2021) Study of polyvinyl alcohol–SiO2 nanoparticles polymeric membrane in wastewater treatment containing zinc ions. Polymers 13:1875

    PubMed  PubMed Central  Google Scholar 

  22. Souza V, Quadri M (2013) Organic–inorganic hybrid membranes in separation processes: a 10-year review. Braz J Chem Eng 30:683–700

    CAS  Google Scholar 

  23. Arif Z, Sethy N, Mishra P, Verma B (2020) Development of eco-friendly, self-cleaning, antibacterial membrane for the elimination of chromium(VI) from tannery wastewater. Int J Environ Sci Technol 17:4265–4280

    CAS  Google Scholar 

  24. Arif Z, Sethy NK (2022) Quantitative assessment and optimization of bi-functional membrane for remediation of Cr(VI) from wastewater. Water Sci Technol 86:1991–2007

    CAS  PubMed  Google Scholar 

  25. Mohammad AW, Teow Y, Ang W, Chung Y, Oatley-Radcliffe D, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    CAS  Google Scholar 

  26. Bhattacharya M, Mandal MK (2018) Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. J Clean Prod 186:241–252

    CAS  Google Scholar 

  27. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via positively charged TETA-MWCNT/PES hybrid nanofiltration membranes. Sep Purif Technol 194:488–502

    CAS  Google Scholar 

  28. Dalvi V, Tang YP, Staudt C, Chung TS (2017) Influential effects of nanoparticles, solvent and surfactant treatments on thin film nanocomposite (TFN) membranes for seawater desalination. Desalination 420:216–225

    CAS  Google Scholar 

  29. Morsi RE, Alsabagh AM, Nasr SA, Zaki MM (2017) Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int J Biol Macromol 97:264–269

    CAS  PubMed  Google Scholar 

  30. Wang Y, Zhu J, Dong G, Zhang Y, Guo N, Liu J (2015) Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Sep Purif Technol 150:243–251

    Google Scholar 

  31. Tahazadeh S, Mohammadi T, Tofighy MA, Khanlari S, Karimi H, Emrooz HBM (2021) Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications. J Membr Sci 638:119692

    CAS  Google Scholar 

  32. Ingole PG, Baig MI, Choi WK, Lee HK (2016) Synthesis and characterization of polyamide/polyester thin-film nanocomposite membranes achieved by functionalized TiO2 nanoparticles for water vapor separation. J Mater Chem A 4:5592–5604

    CAS  Google Scholar 

  33. Pouya ZA, Tofighy MA, Mohammadi T (2021) Synthesis and characterization of polytetrafluoroethylene/oleic acid-functionalized carbon nanotubes composite membrane for desalination by vacuum membrane distillation. Desalination 503:114931

    CAS  Google Scholar 

  34. Wu X, Wu Y, Dong H, Zhao J, Wang C, Zhou S et al (2018) Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@ polyaniline for selective enrichment and separation of ibuprofen. Appl Surf Sci 428:555–565

    CAS  Google Scholar 

  35. Ingole PG (2019) Application of sustainable nanocomposites in membrane technology. Sustainable polymer composites and nanocomposites. Springer, Berlin, pp 935–960

    Google Scholar 

  36. Ihsanullah (2019) Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep Purif Technol 209:307–337

    CAS  Google Scholar 

  37. Farahani MHDA, Vatanpour V (2019) Polymer/carbon nanotubes mixed matrix membranes for water purification. Nanoscale materials in water purification. Elsevier, Amsterdam, pp 87–110

    Google Scholar 

  38. Roy K, Mukherjee A, Maddela NR, Chakraborty S, Shen B, Li M et al (2020) Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—a review. J Environ Chem Eng 8:103572

    CAS  Google Scholar 

  39. Goh P, Ismail A, Ng B (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    CAS  Google Scholar 

  40. Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10:89

    PubMed  PubMed Central  Google Scholar 

  41. Sandu T, Chiriac AL, Tsyntsarski B, Stoycheva I, Căprărescu S, Damian CM et al (2021) Advanced hybrid membranes for efficient nickel retention from simulated wastewater. Polym Int 70:866–876

    CAS  Google Scholar 

  42. Nayak MC, Isloor AM, Lakshmi B, Marwani HM, Khan I (2020) Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arab J Chem 13:4661–4672

    Google Scholar 

  43. Xu Y, Goh K, Wang R, Bae T-H (2019) A review on polymer-based membranes for gas–liquid membrane contacting processes: current challenges and future direction. Sep Purif Technol 229:115791

    CAS  Google Scholar 

  44. Wei D, Zhou S, Li M, Xue A, Zhang Y, Zhao Y et al (2019) PVDF/palygorskite composite ultrafiltration membranes: effects of nano-clay particles on membrane structure and properties. Appl Clay Sci 181:105171

    Google Scholar 

  45. Valamohammadi E, Behdarvand F, Tofighy MA, Mohammadi T (2020) Preparation of positively charged thin-film nanocomposite membranes based on the reaction between hydrolyzed polyacrylonitrile containing carbon nanomaterials and HPEI for water treatment application. Sep Purif Technol 242:116826

    CAS  Google Scholar 

  46. Behdarvand F, Valamohammadi E, Tofighy MA, Mohammadi T (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9:104650

    CAS  Google Scholar 

  47. Tofighy MA, Mohammadi T (2019) Barrier, diffusion, and transport properties of rubber nanocomposites containing carbon nanofillers. Carbon-based nanofillers and their rubber nanocomposites. Elsevier, Amsterdam, pp 253–285

    Google Scholar 

  48. Dehghankar M, Mohammadi T, Moghadam MT, Tofighy MA (2020) Metal-organic framework/zeolite nanocrystal/poly (vinylidene fluoride) composite ultrafiltration membranes with flux/antifouling advantages. Mater Chem Phys 260:124128

    Google Scholar 

  49. Jun B-M, Al-Hamadani YAJ, Son A, Park CM, Jang M, Jang A et al (2020) Applications of metal-organic framework based membranes in water purification: a review. Sep Purif Technol 247:116947

    CAS  Google Scholar 

  50. Li J-F, Xu Z-L, Yang H, Yu L-Y, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    CAS  Google Scholar 

  51. Grylewicz A, Mozia S (2021) Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review. Sep Purif Technol 256:117827

    CAS  Google Scholar 

  52. Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Eftimie Totu E, Modrogan C et al (2020) Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 12:1792

    PubMed  PubMed Central  Google Scholar 

  53. Shen J-n, Ruan H-m, Wu L-g, Gao C-j (2011) Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem Eng J 168:1272–1278

    CAS  Google Scholar 

  54. Goh P, Ismail A, Hilal N (2016) Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination 380:100–104

    CAS  Google Scholar 

  55. Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep Purif Technol 188:431–450

    CAS  Google Scholar 

  56. Al Aani S, Haroutounian A, Wright CJ, Hilal N (2018) Thin film nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications. Desalination 427:60–74

    CAS  Google Scholar 

  57. Wong K, Goh P, Ismail A (2015) Gas separation performance of thin film nanocomposite membranes incorporated with polymethyl methacrylate grafted multi-walled carbon nanotubes. Int Biodeterior Biodegrad 102:339–345

    CAS  Google Scholar 

  58. El Badawi N, Ramadan AR, Esawi AM, El-Morsi M (2014) Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344:79–85

    Google Scholar 

  59. Ismail NH, Salleh WNW, Ismail AF, Hasbullah H, Yusof N, Aziz F et al (2020) Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Sep Purif Technol 233:116007

    CAS  Google Scholar 

  60. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817

    CAS  Google Scholar 

  61. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95

    CAS  Google Scholar 

  62. Tabatabaei SH, Carreau PJ, Ajji A (2009) Microporous membranes obtained from PP/HDPE multilayer films by stretching. J Membr Sci 345:148–159

    CAS  Google Scholar 

  63. Teo W-E, Ramakrishna S (2009) Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol 69:1804–1817

    CAS  Google Scholar 

  64. Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21:241–255

    CAS  Google Scholar 

  65. Choi J-H, Jegal J, Kim W-N (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284:406–415

    CAS  Google Scholar 

  66. Tavakol I, Hadadpour S, Shabani Z, Tofighy MA, Mohammadi T, Sahebi S (2020) Synthesis of novel thin film composite (TFC) forward osmosis (FO) membranes incorporated with carboxylated carbon nanofibers (CNFs). J Environ Chem Eng 8:104614

    CAS  Google Scholar 

  67. Cadotte J, Petersen R, Larson R, Erickson E (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31

    Google Scholar 

  68. Dong H, Wu L, Zhang L, Chen H, Gao C (2015) Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes. J Membr Sci 494:92–103

    CAS  Google Scholar 

  69. Samadi S, Khalilian F, Tabatabaee A (2014) Synthesis, characterization and application of Cu–TiO2/chitosan nanocomposite thin film for the removal of some heavy metals from aquatic media. J Nanostruct Chem 4:84

    Google Scholar 

  70. Rakhshan N, Pakizeh M (2015) Removal of triazines from water using a novel OA modified SiO2/PA/PSf nanocomposite membrane. Sep Purif Technol 147:245–256

    CAS  Google Scholar 

  71. Bassyouni M, Abdel-Aziz M, Zoromba MS, Abdel-Hamid S, Drioli E (2019) A review of polymeric nanocomposite membranes for water purification. J Ind Eng Chem 73:19–46

    CAS  Google Scholar 

  72. Jeong B-H, Hoek EM, Yan Y, Subramani A, Huang X, Hurwitz G et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7

    CAS  Google Scholar 

  73. Azelee IW, Goh P, Lau W, Ismail A, Rezaei-DashtArzhandi M, Wong K et al (2017) Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube–titania nanotube hybrid. Desalination 409:163–170

    Google Scholar 

  74. Zargar M, Hartanto Y, Jin B, Dai S (2017) Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes. J Membr Sci 541:19–28

    CAS  Google Scholar 

  75. Zarrabi H, Yekavalangi ME, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 394:83–90

    CAS  Google Scholar 

  76. Lau W, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail A (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324

    CAS  PubMed  Google Scholar 

  77. Jye LW, Ismail AF (2016) Nanofiltration membranes: synthesis, characterization, and applications. Crc Press, Boca Raton

    Google Scholar 

  78. Stanton BW, Harris JJ, Miller MD, Bruening ML (2003) Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19:7038–7042

    CAS  Google Scholar 

  79. Escobar-Ferrand L, Li D, Lee D, Durning CJ (2014) All-nanoparticle layer-by-layer surface modification of micro-and ultrafiltration membranes. Langmuir 30:5545–5556

    CAS  PubMed  Google Scholar 

  80. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    CAS  Google Scholar 

  81. Hamada N, Sawada S-i, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys rev lett 68:1579

    CAS  PubMed  Google Scholar 

  82. Bhushan B, Baumann (2007) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  83. Rybak-Smith MJ, Sim RB (2011) Complement activation by carbon nanotubes. Adv Drug Deliv Rev 63:1031–1041

    CAS  PubMed  Google Scholar 

  84. Ganesh E (2013) Single walled and multi walled carbon nanotube structure, synthesis and applications. Int J Innov Technol Explor Eng 2:311–320

    Google Scholar 

  85. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N et al (2017) Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes. Mater Sci Eng C 77:572–582

    CAS  Google Scholar 

  86. Khalid A, Al-Juhani AA, Al-Hamouz OC, Laoui T, Khan Z, Atieh MA (2015) Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination 367:134–144

    CAS  Google Scholar 

  87. Liu H-X, Wang N, Zhao C, Ji S, Li J-R (2018) Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures—a review. Chin J Chem Eng 26:1–16

    CAS  Google Scholar 

  88. Dube ST, Moutloali RM, Malinga SP (2020) Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe–Cu bimetallic nanoparticles for water treatment. J Environ Chem Eng 8:103962

    CAS  Google Scholar 

  89. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    CAS  Google Scholar 

  90. Peng F, Pan F, Sun H, Lu L, Jiang Z (2007) Novel nanocomposite pervaporation membranes composed of poly (vinyl alcohol) and chitosan-wrapped carbon nanotube. J Membr Sci 300:13–19

    CAS  Google Scholar 

  91. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    CAS  Google Scholar 

  92. Xue C, Wang Z-X, Du G-Q, Fan L-H, Mu Y, Ren J-G et al (2016) Integration of ethanol removal using carbon nanotube (CNT)-mixed membrane and ethanol fermentation by self-flocculating yeast for antifouling ethanol recovery. Process Biochem 51:1140–1146

    CAS  Google Scholar 

  93. Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107

    CAS  Google Scholar 

  94. Sani N, Lau W, Ismail A (2015) Polyphenylsulfone-based solvent resistant nanofiltration (SRNF) membrane incorporated with copper-1, 3, 5-benzenetricarboxylate (Cu-BTC) nanoparticles for methanol separation. RSC Adv 5:13000–13010

    CAS  Google Scholar 

  95. Boom R, Van den Boomgaard T, Smolders C (1994) Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: evaluation with the system PES—PVP—NMP—water. J Membr Sci 90:231–249

    CAS  Google Scholar 

  96. Boom R, Wienk I, Van den Boomgaard T, Smolders C (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J membr sci 73:277–292

    CAS  Google Scholar 

  97. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82

    CAS  Google Scholar 

  98. Celik E, Park H, Choi H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45:274–282

    CAS  PubMed  Google Scholar 

  99. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294

    CAS  Google Scholar 

  100. Kar KK, Rana S, Pandey J (2015) Handbook of polymer nanocomposites processing, performance and application. Springer, Berlin

    Google Scholar 

  101. Sun SP, Hatton TA, Chung T-S (2011) Hyperbranched polyethyleneimine induced cross-linking of polyamide–imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environ Sci Technol 45:4003–4009

    CAS  PubMed  Google Scholar 

  102. Farahani MHDA, Rabiee H, Vatanpour V (2019) Comparing the effect of incorporation of various nanoparticulate on the performance and antifouling properties of polyethersulfone nanocomposite membranes. J water process eng 27:47–57

    Google Scholar 

  103. Zhang X, Lang W-Z, Xu H-P, Yan X, Guo Y-J, Chu L-F (2014) Improved performances of PVDF/PFSA/O-MWNTs hollow fiber membranes and the synergism effects of two additives. J Membr Sci 469:458–470

    CAS  Google Scholar 

  104. Qiu S, Wu L, Pan X, Zhang L, Chen H, Gao C (2009) Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J Membr Sci 342:165–172

    CAS  Google Scholar 

  105. Giljean S, Bigerelle M, Anselme K, Haidara H (2011) New insights on contact angle/roughness dependence on high surface energy materials. Appl Surf Sci 257:9631–9638

    CAS  Google Scholar 

  106. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    CAS  PubMed  Google Scholar 

  107. Wu L, Sun J, Wang Q (2006) Poly (vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. J Membr Sci 285:290–298

    CAS  Google Scholar 

  108. Sears K, Dumée L, Schütz J, She M, Huynh C, Hawkins S et al (2010) Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 3:127–149

    CAS  PubMed Central  Google Scholar 

  109. Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S et al (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18:1551–1559

    CAS  Google Scholar 

  110. Zhang Y, Zhang S, Chung T-S (2015) Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ Sci Technol 49:10235–10242

    CAS  PubMed  Google Scholar 

  111. Tofighy MA, Mohammadi T (2020) Divalent heavy metal ions removal from contaminated water using positively charged membrane prepared from a new carbon nanomaterial and HPEI. Chem Eng J 388:124192

    CAS  Google Scholar 

  112. Irfan M, Basri H, Irfan M, Lau W-J (2015) An acid functionalized MWCNT/PVP nanocomposite as a new additive for fabrication of an ultrafiltration membrane with improved anti-fouling resistance. RSC Adv 5:95421–95432

    CAS  Google Scholar 

  113. Roy S, Ntim SA, Mitra S, Sirkar KK (2011) Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites. J Membr Sci 375:81–87

    CAS  Google Scholar 

  114. Ahmad A, Abdulkarim A, Ooi B, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267

    CAS  Google Scholar 

  115. Kim HJ, Baek Y, Choi K, Kim D-G, Kang H, Choi Y-S et al (2014) The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs. RSC Adv 4:32802–32810

    CAS  Google Scholar 

  116. Sakala GP, Reches M (2018) Peptide-based approaches to fight biofouling. Adv Mater Interfaces 5:1800073

    Google Scholar 

  117. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    CAS  Google Scholar 

  118. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    CAS  PubMed  Google Scholar 

  119. Shaban M, Ashraf AM, AbdAllah H, El-Salam HA (2018) Titanium dioxide nanoribbons/multi-walled carbon nanotube nanocomposite blended polyethersulfone membrane for brackish water desalination. Desalination 444:129–141

    CAS  Google Scholar 

  120. Thostenson ET, Li C, Chou T-W (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    CAS  Google Scholar 

  121. Yokwana K, Gumbi N, Adams F, Mhlanga S, Nxumalo E, Mamba B (2015) Development of functionalized doped carbon nanotube/polysulfone nanofiltration membranes for fouling control. J Appl Polym Sci 132

  122. Park CH, Tocci E, Fontananova E, Bahattab MA, Aljlil SA, Drioli E (2016) Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: mesoscale simulation and experimental approach for optimizing dispersion. J Membr Sci 514:195–209

    CAS  Google Scholar 

  123. Vatanpour V, Esmaeili M, Farahani MHDA (2014) Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J Membr Sci 466:70–81

    CAS  Google Scholar 

  124. Peydayesh M, Mohammadi T, Bakhtiari O (2019) Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT. J Ind Eng Chem 69:127–140

    CAS  Google Scholar 

  125. Abidin MNZ, Goh PS, Ismail AF, Othman MHD, Hasbullah H, Said N et al (2016) Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes. Mater Sci Eng C 68:540–550

    CAS  Google Scholar 

  126. Phao N, Nxumalo EN, Mamba BB, Mhlanga SD (2013) A nitrogen-doped carbon nanotube enhanced polyethersulfone membrane system for water treatment. Phys Chem Earth A/B/C 66:148–156

    Google Scholar 

  127. Zinadini S, Rostami S, Vatanpour V, Jalilian E (2017) Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J Membr Sci 529:133–141

    CAS  Google Scholar 

  128. Wang W, Zhu L, Shan B, Xie C, Liu C, Cui F et al (2018) Preparation and characterization of SLS–CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 548:459–469

    CAS  Google Scholar 

  129. Wang L, Song X, Wang T, Wang S, Wang Z, Gao C (2015) Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application. Appl Surf Sci 330:118–125

    CAS  Google Scholar 

  130. Mansourpanah Y, Madaeni S, Rahimpour A, Adeli M, Hashemi M, Moradian M (2011) Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: property changes and morphological studies. Desalination 277:171–177

    CAS  Google Scholar 

  131. Sianipar M, Kim SH, Min C, Tijing LD, Shon HK (2016) Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J Ind Eng Chem 34:364–373

    CAS  Google Scholar 

  132. Shah P, Murthy C (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98

    CAS  Google Scholar 

  133. de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Membr Sci 447:395–402

    Google Scholar 

  134. Medina-Gonzalez Y, Remigy J-C (2011) Sonication-assisted preparation of pristine MWCNT–polysulfone conductive microporous membranes. Mater Lett 65:229–232

    CAS  Google Scholar 

  135. Brunet L, Lyon DY, Zodrow K, Rouch J-C, Caussat B, Serp P et al (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci 25:565–576

    CAS  Google Scholar 

  136. Chan W-F, Marand E, Martin SM (2016) Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance. J Membr Sci 509:125–137

    CAS  Google Scholar 

  137. Son M, Park H, Liu L, Choi H, Kim JH, Choi H (2016) Thin-film nanocomposite membrane with CNT positioning in support layer for energy harvesting from saline water. Chem Eng J 284:68–77

    CAS  Google Scholar 

  138. Son M, Choi H-g, Liu L, Celik E, Park H, Choi H (2015) Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem Eng J 266:376–384

    CAS  Google Scholar 

  139. Zhang H-Z, Xu Z-L, Ding H, Tang Y-J (2017) Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+. Desalination 420:158–166

    CAS  Google Scholar 

  140. Wu M-B, Lv Y, Yang H-C, Liu L-F, Zhang X, Xu Z-K (2016) Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J Membr Sci 515:238–244

    CAS  Google Scholar 

  141. Lee TH, Lee MY, Lee HD, Roh JS, Kim HW, Park HB (2017) Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes. J Membr Sci 539:441–450

    CAS  Google Scholar 

  142. Shen J, Yu C, Ruan H, Gao C, Van der Bruggen B (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Memb Sci 442:18–26

    CAS  Google Scholar 

  143. Xue S-M, Xu Z-L, Tang Y-J, Ji C-H (2016) Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl Mater Interfaces 8:19135–19144

    CAS  PubMed  Google Scholar 

  144. Thines R, Mubarak N, Nizamuddin S, Sahu J, Abdullah E, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    CAS  Google Scholar 

  145. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    CAS  PubMed  Google Scholar 

  146. Liu D, Mao Y, Ding L (2018) Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. J Water Health 16:171–180

    PubMed  Google Scholar 

  147. Tofighy MA, Mohammadi T (2022) Functional charcoal based nanomaterial with excellent colloidal property for fabrication of polyethersulfone ultrafiltration membrane with improved flux and fouling resistance. Mater Chem Phys 285:126167

    CAS  Google Scholar 

  148. Hadadpour S, Tavakol I, Shabani Z, Mohammadi T, Tofighy MA, Sahebi S (2021) Synthesis and characterization of novel thin film composite forward osmosis membrane using charcoal-based carbon nanomaterials for desalination application. J Environ Chem Eng 9:104880

    CAS  Google Scholar 

  149. Dolatkhah F, Mohammadi T, Tofighy MA (2022) Polysulfone hollow fiber membrane containing charcoal–carbon nanomaterial for wastewater treatment in membrane bioreactor. J Water Process Eng 50:103222

    Google Scholar 

  150. Daraei P, Madaeni SS, Ghaemi N, Khadivi MA, Astinchap B, Moradian R (2013) Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J Membr Sci 444:184–191

    CAS  Google Scholar 

  151. Arockiasamy DL, Alam J, Alhoshan M (2013) Carbon nanotubes-blended poly (phenylene sulfone) membranes for ultrafiltration applications. Appl Water Sci 3:93–103

    Google Scholar 

  152. Morales-Torres S, Esteves CM, Figueiredo JL, Silva AM (2016) Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J Membr Sci 520:326–336

    CAS  Google Scholar 

  153. Zheng J, Li M, Yu K, Hu J, Zhang X, Wang L (2017) Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J Membr Sci 524:344–353

    CAS  Google Scholar 

  154. Farahbakhsh J, Delnavaz M, Vatanpour V (2017) Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination 410:1–9

    Google Scholar 

  155. Nayak MC, Isloor AM, Lakshmi B, Marwani HM, Khan I. Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arabian Journal of Chemistry. 2019.

Download references

Acknowledgements

The authors would like to thank Iran National Science Foundation (INSF) for supporting the research (Grant No.: 96008182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valamohammadi, E., Behdarvand, F., Mohammadi, T. et al. Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review. Polym. Bull. 80, 11589–11632 (2023). https://doi.org/10.1007/s00289-022-04635-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04635-y

Keywords

Navigation