Skip to main content
Log in

Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated fluorescent MXene nanosheets as cancer theranostics agent

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

MXene has become one of the most sought-after 2D materials with incredible potential in various fields. This work reports the use of a cationic polymer polyethyleneimine (PEI) to generate a positive charge on the MXene surface. PEI is a positively charged polymer containing repeating amine groups. PEI functionalized MXene nanoflakes (PEI_Ti3C2) were produced by etching Ti3AlC2, followed by ultrasonication along with PEI, and then hydrothermally treated at 200 °C for 24 h. The as-obtained nanosheets were characterized through XRD, AFM, TEM, UV–Vis spectroscopy, PL, and FTIR. The thickness of PEI_Ti3C2 was found to be 2.6 ± 0.8 nm compared to control (h-Ti3C2) which exhibited 6.8 ± 1.6 nm height, proving utilization of PEI both as a surfactant as well as a functionalizing agent. The surface charge of PEI_Ti3C2 sheets was observed to be 15.57 ± 2.76 mV due to the presence of imine groups. Colloidal solution of PEI_Ti3C2 displayed high absorption in both the UV (315–600 nm) and NIR ranges (880–996 nm) as well as exhibits blue fluorescence. The use of the PEI polymer also assists in MXene forming a stable aqueous dispersion. PEI_Ti3C2 showed high biocompatibility in mouse fibroblast and red blood cells. On the other hand, the nanosheets demonstrated concentration-dependent cellular toxicity on cancer cells when irradiated with 808 nm laser irradiation for 10 min. The small-sized PEI_Ti3C2 are highly scalable, reproducible, biocompatible, possess intrinsic NIR activity, fluorescence, and cationic character. The NIR activity and photoluminescence of the 2D nanosheets make them multifaceted to be utilized as cell labeling probes, sensors, and photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  2. Alhabeb M, Maleski K, Anasori B et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  3. Chen K, Qiu N, Deng Q et al (2017) Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN. In vitro tests and first-principles calculations. ACS Biomater Sci Eng 3:2293–2301. https://doi.org/10.1021/ACSBIOMATERIALS.7B00432

    Article  CAS  PubMed  Google Scholar 

  4. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  PubMed  Google Scholar 

  5. Xin M, Li J, Ma Z et al (2020) MXenes and their applications in wearable sensors. Front Chem 8:297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai C, Lin H, Xu G et al (2017) Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater 29:8637–8652. https://doi.org/10.1021/acs.chemmater.7b02441

    Article  CAS  Google Scholar 

  7. Guan Q, Ma J, Yang W et al (2019) Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11:14123–14133. https://doi.org/10.1039/c9nr04421c

    Article  CAS  PubMed  Google Scholar 

  8. Singh B, Bahadur R, Neekhra S et al (2021) Hydrothermal-assisted synthesis and stability of multifunctional mxene nanobipyramids: Structural, chemical, and optical evolution. ACS Appl Mater Interfaces 13:3011–3023. https://doi.org/10.1021/acsami.0c18712

    Article  CAS  PubMed  Google Scholar 

  9. Cai G, Yu Z, Tong P, Tang D (2019) Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 11:15659–15667. https://doi.org/10.1039/c9nr05797h

    Article  CAS  PubMed  Google Scholar 

  10. George SM, Kandasubramanian B (2020) Advancements in MXene-polymer composites for various biomedical applications. Ceram Int 46:8522–8535

    Article  CAS  Google Scholar 

  11. Sun B, Lv H, Liu Z et al (2021) CO3O4 @PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J Mater Chem A 9:6335–6344. https://doi.org/10.1039/d0ta11392a

    Article  CAS  Google Scholar 

  12. Li K, Jiao T, Xing R et al (2018) Fabrication of hierarchical MXene-based AuNPs-containing core–shell nanocomposites for high efficient catalysts. Green Energy Environ 3:147–155. https://doi.org/10.1016/j.gee.2017.11.004

    Article  Google Scholar 

  13. Tian Y, Yang C, Que W et al (2017) Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J Power Sources 369:78–86. https://doi.org/10.1016/j.jpowsour.2017.09.085

    Article  CAS  Google Scholar 

  14. Jimmy J, Kandasubramanian B (2020) Mxene functionalized polymer composites: Synthesis and applications. Eur Polym J 122:109367

    Article  CAS  Google Scholar 

  15. Fan X, Liu L, Jin X et al (2019) MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J Mater Chem A 7:14319–14327. https://doi.org/10.1039/c9ta03962g

    Article  CAS  Google Scholar 

  16. Tian W, VahidMohammadi A, Wang Z et al (2019) Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-10631-0

    Article  CAS  Google Scholar 

  17. Chen Z, Lv Z, Sun Y et al (2020) Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 8:2951–2973

    Article  CAS  PubMed  Google Scholar 

  18. Wang F, Liu P, Nie T et al (2013) Characterization of a polyamine microsphere and its adsorption for protein. Int J Mol Sci 14:17–29. https://doi.org/10.3390/ijms14010017

    Article  CAS  Google Scholar 

  19. Ihm JE, Krier I, Lim JM et al (2015) Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: in vitro and in vivo. Macromol Res 23:387–395. https://doi.org/10.1007/s13233-015-3047-8

    Article  CAS  Google Scholar 

  20. Cho TJ, Gorham JM, Pettibone JM et al (2019) Parallel multi-parameter study of PEI-functionalized gold nanoparticle synthesis for bio-medical applications: part 1-a critical assessment of methodology, properties, and stability. J Nanopart Res. https://doi.org/10.1007/S11051-019-4621-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mojtabavi M, Vahidmohammadi A, Liang W et al (2019) Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13:3042–3053. https://doi.org/10.1021/acsnano.8b08017

    Article  CAS  PubMed  Google Scholar 

  22. Jiang L, Duan J, Zhu J et al (2020) Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis. ACS Nano 14:2436–2444. https://doi.org/10.1021/acsnano.9b09912

    Article  CAS  PubMed  Google Scholar 

  23. Jastrzębska AM, Szuplewska A, Wojciechowski T et al (2017) In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater 339:1–8. https://doi.org/10.1016/J.JHAZMAT.2017.06.004

    Article  PubMed  Google Scholar 

  24. Sun B, Dong X, Li H et al (2021) Surface charge engineering for two-dimensional Ti2CTx MXene for highly efficient and selective removal of cationic dye from aqueous solution. Sep Purif Technol 272:118964. https://doi.org/10.1016/J.SEPPUR.2021.118964

    Article  CAS  Google Scholar 

  25. Satheeshkumar E, Makaryan T, Melikyan A et al (2016) One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci Rep 6:1–9. https://doi.org/10.1038/srep32049

    Article  CAS  Google Scholar 

  26. Yu X, Cai X, Cui H et al (2017) Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9:17859–17864. https://doi.org/10.1039/c7nr05997c

    Article  CAS  PubMed  Google Scholar 

  27. Hussein EA, Zagho MM, Rizeq BR et al (2019) Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int J Nanomed 14:4529–4539. https://doi.org/10.2147/IJN.S202208

    Article  CAS  Google Scholar 

  28. Kumawat MK, Thakur M, Bahadur R et al (2019) Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater Sci Eng C 103:109774. https://doi.org/10.1016/j.msec.2019.109774

    Article  CAS  Google Scholar 

  29. Shao J, Zhang J, Jiang C et al (2020) Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem Eng J 400:126009. https://doi.org/10.1016/j.cej.2020.126009

    Article  CAS  Google Scholar 

  30. Rafieerad A, Yan W, Amiri A, Dhingra S (2020) Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater Des 196:109091. https://doi.org/10.1016/j.matdes.2020.109091

    Article  CAS  Google Scholar 

  31. Wang Z, Xuan J, Zhao Z et al (2017) Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 11:11559–11565. https://doi.org/10.1021/acsnano.7b06476

    Article  CAS  PubMed  Google Scholar 

  32. Bahadur R, Kumawat MK, Thakur M, Srivastava R (2019) Multi-fluorescent cationic carbon dots for solid-state fingerprinting. J Lumin 208:428–436. https://doi.org/10.1016/j.jlumin.2018.12.049

    Article  CAS  Google Scholar 

  33. Sharma A, Gadly T, Gupta A et al (2016) Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett 7:3695–3702. https://doi.org/10.1021/acs.jpclett.6b01791

    Article  CAS  PubMed  Google Scholar 

  34. Singh B, Bahadur R, Rangara M et al (2021) Influence of surface states on the optical and cellular property of thermally stable red emissive graphitic carbon dots. ACS Appl Bio Mater 4:4641–4651. https://doi.org/10.1021/acsabm.1c00379

    Article  CAS  PubMed  Google Scholar 

  35. Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. https://doi.org/10.1039/c1cs15188f

    Article  CAS  PubMed  Google Scholar 

  36. Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8:969–981

    Article  CAS  PubMed  Google Scholar 

  37. Liu S, Pan X, Liu H (2020) Two-dimensional nanomaterials for photothermal therapy. Angew Chem Int Ed Engl 59:5890–5900. https://doi.org/10.1002/ANIE.201911477

    Article  CAS  PubMed  Google Scholar 

  38. Szuplewska A, Kulpińska D, Dybko A et al (2019) 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Eng C 98:874–886. https://doi.org/10.1016/J.MSEC.2019.01.021

    Article  CAS  Google Scholar 

  39. Huang Z, Cui X, Li S et al (2020) Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics 9:2233–2249. https://doi.org/10.1515/NANOPH-2019-0571/ASSET/GRAPHIC/J_NANOPH-2019-0571_FIG_008.JPG

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Sophisticated Analytical Instrumentation Facility (SAIF), and Industrial Research Consultancy Centre (IRCC), Indian Institute of Technology Bombay (IITB), India for providing central instrumentation facility. B.S. acknowledges the Department of Biotechnology, India, for her fellowship.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by [RS, BS, RB]; methodology was contributed by [BS, RB]; formal analysis and investigation were contributed by [RS, BS, RB]; writing—original draft preparation, was contributed by [BS, RB]; writing—review and editing, was contributed by [MG, RS]; resources were contributed by [MG, RS]; supervision was contributed by [MG, RS].

Corresponding author

Correspondence to Rohit Srivastava.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the contents of this article.

Ethics approval

Blood withdrawal was done after approval from Institutional Ethics Committee (IEC), IIT Bombay, India. (IITB-IEC/2019/031).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2548 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Bahadur, R., Gandhi, M. et al. Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated fluorescent MXene nanosheets as cancer theranostics agent. Polym. Bull. 80, 11329–11342 (2023). https://doi.org/10.1007/s00289-022-04627-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04627-y

Keywords

Navigation