Skip to main content

Advertisement

Log in

A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy-efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber, gas–liquid membrane contactors are a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy device for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas–liquid membrane contactors for acid gas removal were also briefly discussed. The most essential factors of membrane contactors for CO2 absorption/stripping are also discussed, including the hydrophilicity and hydrophobicity of the absorption materials in the membranes, as well as other models published in the literature. The benefits and drawbacks of gas–liquid contactor membranes in CO2 absorption/stripping are also investigated, and the technique is compared to existing separation methods. The technology’s present condition and potential directions are explored, as well as some recommendations for further study in order to commercialize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Salimi M, Pirouzfar V, Kianfar E (2017) Novel nanocomposite membranes prepared with PVA/ABS and silica nanoparticles for CH4/C2H6 separation. Polym Sci A 59(4):566–574

    CAS  Google Scholar 

  2. Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticles filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295(1):215–226

    CAS  Google Scholar 

  3. Pirouzfar V, Hosseini SS, Omidkhah MR (2014) Modeling and optimization of gas transport characteristics of carbon molecular sieve membranes through statistical analysis. Polym Eng Sci 54(1):147–157

    CAS  Google Scholar 

  4. Ramakul P, Prapasawad T, Pancharoen U, Pattaveekongka W (2007) Separation of radioactive metal ions by hollow fiber-supported liquid membrane and permeability analysis. J Chin Ins Chem Eng 38(5–6):489–494

    CAS  Google Scholar 

  5. Lin S-H, Chiang P-C, Hsieh C-F, Li M-H, Tung K-L (2008) Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-1-propanol in PVDF membrane contactor. J Chin Inst Chem Eng 39(1):13–21

    Google Scholar 

  6. Ahmad NA, Leo CP, Junaidi MUM, Ahmad AL (2016) PVDF/PBI membrane incorporated with SAPO-34 zeolite for membrane gas absorption. J Taiwan Ins Chem Eng 63:143–150

    CAS  Google Scholar 

  7. Soleymanipour SF, SPirouzfarAlihosseini AHVA (2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J Appl Poly Sci. https://doi.org/10.1002/app.43839

    Article  Google Scholar 

  8. Heydari Sh, Pirouzfar V (2016) The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: empirical modeling and process optimization by response surface. RSC Adv 6:14149–14163

    CAS  Google Scholar 

  9. Jamshidi M, Pirouzfar V (2017) influence of nanoparticles on gas transport properties of mixed matrix membranes: experimental investigation and modeling. Korean J Chem Eng. https://doi.org/10.1007/s11814-016-0302-4

    Article  Google Scholar 

  10. Nematollahi MH, Saiedi AH, Pirouzfar V, Akhondi E (2016) Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticles fillers for CO2/N2 separation. Macromol Res 24(9):782–792

    CAS  Google Scholar 

  11. Pirouzfar V, Omidkhah MR (2016) mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm. Iran Polym J 25(3):203–212

    CAS  Google Scholar 

  12. Pirouzfar V, Omidkhah MR, Moghaddam AZ (2014) Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived blended polyimides through statistical analysis. J Ind Eng Chem 20(3):1061–1070

    CAS  Google Scholar 

  13. Ebrahimi S, Mollaiy-Berneti S, Asadi H, Peydayesh M, Akhlaghian F, Mohammadi T (2016) PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chem Eng Res Des 109:647–656

    CAS  Google Scholar 

  14. Dorosti F, Omidkhah M, Abedini R (2014) Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem Eng Res Des 92(11):2439–2448

    CAS  Google Scholar 

  15. Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O (2013) Preparation and characterization of SAPO-34–Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem Eng Res Des 91(7):1335–1342

    CAS  Google Scholar 

  16. Feijani EA, Mahdavi H, Tavasoli A (2015) Poly (vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chem Eng Res Des 96:87–102

    CAS  Google Scholar 

  17. Keshavarz P, Fathikalajahi J, Ayatollahi S (2008) Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. J Hazard Mater 152(3):1237–1247

    CAS  PubMed  Google Scholar 

  18. R, Faiz, M. Al-Marzouqi, (2011) Insights on natural gas purification: Simultaneous absorption of CO2 and H2S using membrane contactors. Sep Purif Technol 76(3):351–361

    Google Scholar 

  19. Luis P, Van Gerven T, Van der Bruggen B (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38(3):419–448

    CAS  Google Scholar 

  20. George G, Bhoria N, AlHallaq S, Abdala A, Mittal V (2016) Polymer membranes for acid gas removal from natural gas. Sep Purif technol 158:333–356

    CAS  Google Scholar 

  21. Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T, Emadzadeh D (2013) Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Sep Purif Technol 116:67–72

    CAS  Google Scholar 

  22. Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T (2013) Carbon dioxide stripping from diethanolamine solution through porous surface modified PVDF hollow fiber membrane contactor. J Membr Sci 427:270–275

    CAS  Google Scholar 

  23. Bhide BD, Voskericyan A, Stern SA (1998) Hybrid processes for the removal of acid gases from natural gas. J Membr Sci 140(1):27–49

    CAS  Google Scholar 

  24. Mansourizadeh A, Ismail A (2009) Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption. J Membr Sci 348:260–267

    Google Scholar 

  25. Bakeri GIAS-NMT (2010) Effect of polymer concentration on the structure and performance of polyetherimide hollow fiber membranes. J Membr Sci 363(1–2):103–111

    CAS  Google Scholar 

  26. Naim R, Ismail AF, Mansourizadeh A (2012) Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution. J membr sci 392–393:29–37

    Google Scholar 

  27. Rahbari-Sisakht M, Ismail AF, Matsuura T (2012) Development of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Sep Purif Technol 86:215–220

    CAS  Google Scholar 

  28. Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T (2012) Effect of different additives on the physical and chemical CO2 absorption in polyetherimide hollow fiber membrane contactor system. Sep Purif Technol 98:472–480

    CAS  Google Scholar 

  29. Mansourizadeh A, Ismail A, Abdullah M, Ng B (2010) Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase inversion promoter additives. J Membr Sci 355:200–207

    CAS  Google Scholar 

  30. Ismail AF, Dunkin IR, Gallivan SL, Shilton SJ (1999) Production of super selective polysulfone hollow fiber membranes for gas Separation. Polymer 40(23):6499–6506

    CAS  Google Scholar 

  31. Luis P, Van der Bruggen B, Van Gerven T (2011) Non-dispersive absorption for CO2 capture: from the laboratory to industry. J Chem Technol Biotechnol 86:769–775

    CAS  Google Scholar 

  32. Rahbari-Sisakht M, Ismail AF, Matsuura T (2012) Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Sep purif technol 88:99–106

    CAS  Google Scholar 

  33. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R (2011) CO2 stripping from monoethanolamine using a membrane contactor. J Membr Sci 376:110–118

    CAS  Google Scholar 

  34. Baroña GNB, Choi M, Jung B (2012) High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J Coll Interface Sci 386(1):189–197

    Google Scholar 

  35. Dehghani Kiadehi A, Rahimpour A, Jahanshahi M, Ghoreyshi AA (2015) Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation. J Ind Eng Chem 22:199–207

    CAS  Google Scholar 

  36. Grosso V, Danilo V, Bahattab MA, Di Profio G, Curcio E, Al-Jilil SA, Alsubaie F, Alfife M, Nagy JB, Drioli E, Fontananova E (2014) Polymeric and mixed matrix polyimide membranes. Sep Purif Technol 132:684–696

    CAS  Google Scholar 

  37. Pal G, Kumar S (2016) Modeling of carbon nanotubes and carbon nanotube–polymer composites. Prog Aerosp Sci 80:33–58

    Google Scholar 

  38. Luis P, Van der Bruggen B, Van Gerven T (2011) Non-dispersive absorption for CO2 capture:from the laboratory to industry. J Chem Technol Biotechnol 86:769–775

    CAS  Google Scholar 

  39. Han MJ, Nam ST (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55–61

    CAS  Google Scholar 

  40. Li K, Kong JF, Wang D, Teo WK (1999) Tailor-made asymmetric PVDF hollow fibers for soluble gas removal. AIChE J 45:1211–1219

    CAS  Google Scholar 

  41. Rahbari-Sisakht M, Ismail AF, Matsuura T, Emadzadeh D (2017) Long-term study of CO2 absorption by PVDF/ZSM-5 hollow fiber mixed matrix membrane in gas-liquid contacting process. J Appl Polym Sci 134:44606

    Google Scholar 

  42. Li JL, Chen BH (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41:109–122

    CAS  Google Scholar 

  43. Rangwala H (1996) Absorption of carbon dioxide into aqueous solutions usinghollow fiber membrane contactors. J Membr Sci 112:229–240

    CAS  Google Scholar 

  44. Wang KLWTD (2000) Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J Membr Sci 178:13–23

    CAS  Google Scholar 

  45. Naim R, Ismail AF (2013) Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping. J Hazard Mater 250–251:354–361

    PubMed  Google Scholar 

  46. Choi S-H, Tasselli F, Jansen JC, Barbieri G, Drioli E (2010) Effect of the preparation conditions on the formation of asymmetric poly(vinylidene fluoride) hollow fibre membranes with a dense skin. Eur Polym J 46:1713–1725

    CAS  Google Scholar 

  47. Ng LY, Leo CP, Mohammad AW (2011) Optimizing the incorporation of silica nanoparticles in polysulfone/poly (vinyl alcohol) membranes with response surface methodology. J Appl Polym Sci 121:1804–1814

    CAS  Google Scholar 

  48. Yang Y, Zhang H, Wang P et al (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Memb Sci 288:231–238

    CAS  Google Scholar 

  49. Zhao Y, Lu J, Liu X, Wang Y, Lin J, Na Peng JL, Zhao F (2016) Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J Coll Interface Sci 480:1–8

    CAS  Google Scholar 

  50. Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F (2011) Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation. Chem Eng J 171:1469–1476

    CAS  Google Scholar 

  51. Goh PS, Ismail AF, Sanip SM et al (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81:243–264

    CAS  Google Scholar 

  52. Shah R, Gale JD, Payne MC (1997) Comparing the acidities of zeolites and SAPOs from first principles. Chem Commun 1:131–132

    Google Scholar 

  53. Hoek EMV, Ghosh AK, Huang X et al (2011) Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 283:89–99

    CAS  Google Scholar 

  54. Han R, Zhang S, Liu C et al (2009) Effect of NaA zeolite particle addition on poly(phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance. J Memb Sci 345:5–12

    CAS  Google Scholar 

  55. Li JF, Xu ZL, Yang H et al (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    CAS  Google Scholar 

  56. Wang R, Li DF, Liu M (2004) Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors. J Membr Sci 229:147–157

    CAS  Google Scholar 

  57. Atchariyawut S, Feng C, Wang R (2006) Effect of membrane structure on mass-transfer in the membrane gas–liquid contacting process using micro porous PVDF hollow fibers. J Membr Sci 285:272–281

    CAS  Google Scholar 

  58. Khaisri S, Demontigny D (2009) Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep Purif Technol 65:290–297

    CAS  Google Scholar 

  59. Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H (2009) CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol 69:210–220

    CAS  Google Scholar 

  60. Marzouk SAM, Al-Marzouqi MH, El-Naas MH, Abdullatif N, Ismail ZM (2010) Removal of percentile level of H2S from pressurized H2S–CH4 gas mixture using hollow fiber membrane contactors and absorption solvents. J Membr Sci 360:436–441

    CAS  Google Scholar 

  61. Shia-ChungChen et al (2011) Super-hydrophobic surfaces: from natural to artificial. J Environ manage 92:1083–1090

    Google Scholar 

  62. Lv Y et al (2012) J. appl. Energy. 90:164–174

    Google Scholar 

  63. Ghasem N et al (2012) Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes: properties and performance used as gas–liquid membrane contactor for CO2 absorption. Sep Purif Technol 99:91–103

    CAS  Google Scholar 

  64. Rajabzadeh S et al (2013) Effect of membrane structure on gas absorption performance and long-term stability of membrane contactors. Sep Purif Technol 108:65–73

    CAS  Google Scholar 

  65. Sadoogh M et al (2015) An experimental study on the stability of PVDF hollow fiber membrane contactors for CO2 absorption with alkanolamine solutions. RSC Adv 5:86031–86040

    CAS  Google Scholar 

  66. Tran AT et al (2012) Investigating the feasibility of using polysulfone–montmorillonite composite membranes for protein adsorption. J Food Eng 112(1–2):38–49

    CAS  Google Scholar 

  67. Hemmati A, Rashidi H (2019) Mass transfer investigation and operational sensitivity analysis of amine-based industrial CO2 capture plant. Chin J Chem Eng 27:534–543

    CAS  Google Scholar 

  68. Hemmati A, Rashidi H (2019) Optimization of industrial intercooled post-combustion CO2 absorber by applying rate- base model and response surface methodology (RSM). Process Saf Environ Prot 121:77–86

    CAS  Google Scholar 

  69. Rashidi H, Valeh-e-Sheyda P (2016) An insight on amine air-cooled heat exchanger tubes’ corrosion in the bulk CO2 removal plant. Int J Greenhouse Gas Control 47:101–109

    CAS  Google Scholar 

  70. Sahraie S, Rashidi H, Valeh-e-Sheyda P (2019) An optimization framework to investigate the CO2 capture performance by MEA: experimental and statistical studies using Box-Behnken design. Process Saf Environ Prot 122:161–168

    CAS  Google Scholar 

  71. Rashidi H, Valeh-e-Sheyda P (2016) Inhibition of corrosion in amine air cooled heat exchanger: experimental and numerical study. Appl Therm Eng 98:1241–1250

    Google Scholar 

  72. Rashidi H, Valeh-e-Sheyda P, Azimi N (2018) Structural improvement of a control valve to prevent corrosion in acid gas treating plant pipeline: an experimental and computational analysis. Int J Press Vessels Pip 165:114–125

    Google Scholar 

  73. Rashidi H, Valeh-e-Sheyda P, Ghaderzadeh F (2019) Integration of commercial CO2 capture plant with primary reformer stack of ammonia plant. J Therm Anal Calorim 135(3):1899–1909

    Google Scholar 

  74. Kianfar E, Pirouzfar V, Sakhaeinia H (2017) An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J Taiwan Inst Chem Eng 80:954–962

    CAS  Google Scholar 

  75. Wang Z et al (2013) Comparison and selection of amine-based absorbents in membrane vacuum regeneration process for CO2 capture with low energy cost. Energy Proced 37:1085–1092

    CAS  Google Scholar 

  76. simionikentish MSE, stevens GW (2012) Polyetherimide hollow fiber membranes for CO2 absorption and stripping in membrane contactor application. J Membr Sci 392–393:29–37

    Google Scholar 

  77. Naim R, Ismail AF, Cheer NB, Abdullah MS (2014) Polyvinylidene fluoride and polyetherimide hollow fiber membranes for CO2 stripping in membrane contactor. Chem Eng Res Des 92(7):1391–1398

    CAS  Google Scholar 

  78. Tarsa ZA, Hedayat S, Rahbari-Sisakht M (2015) Fabrication and characterization of polyetherimide hollow fiber membrane contactor for carbon dioxide stripping from monoethanolamine solution. J Membr Sci Res 1(3):118–123

    Google Scholar 

  79. Khaisri S, Demontigny D, Tontiwachwuthikul P, Jiraratananon R (2011) CO2 stripping from monoethanolamine using a membrane contactor. J Membr, Sci 376:110–118

    CAS  Google Scholar 

  80. Naim R, Ismail AF, Mansourizadeh A (2012) Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping. J Membr Sci 423:503–513

    Google Scholar 

  81. Kianfar E, Salimi M, Kianfar F, Kianfar M, Razavikia SAH (2019) CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol Res 27(1):83–89

    CAS  Google Scholar 

  82. Kianfar F, Kianfar E (2019) Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  83. Zhao J, Shi L, Loh CH, Wang R (2018) Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method. Desalination 430:86–97

    CAS  Google Scholar 

  84. Zhu B, Liu J, Wang S, Wang J, Liu M, Yan Z, Shi F, Li J, Li Y (2019) Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation. J Membr Sci 572:650–657

    CAS  Google Scholar 

  85. Li M, Zhang X, Zeng S, Gao H, Deng J, Yang Q, Zhang S (2017) Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv 7:6422–6431

    CAS  Google Scholar 

  86. Bhattacharya M, Mandal MK (2017) Synthesis and characterization of ionic liquid based mixed matrix membrane for acid gas separation. J Clean Prod 156:174–183

    CAS  Google Scholar 

  87. Halder K, Khan MM, Grünauer J, Shishatskiy S, Abetz C, Filiz V, Abetz V (2017) Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J Membr Sci 539:368–382

    CAS  Google Scholar 

  88. Amooghin AE, Mashhadikhan S, Sanaeepur H, Moghadassi A, Matsuura T, Ramakrishna S (2019) Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Prog Mater Sci 102:222–295

    Google Scholar 

  89. M.A. Alaei Shahmirzadi, A. Kargari, (2020) Application of functional single-element and doubleelement oxide nanoparticles for the development of nanocomposite membranes, In: Nanocomposite membranes for water and gas separation, Edited by: M. Sadrzadeh, T. Mohammadi, Elsevier, Amsterdam

  90. Amooghin AE, Sanaeepur H, Omidkhah M, Kargari A (2018) “Ship-in-a-bottle”, a new synthesis strategy for preparing novel hybrid host–guest nanocomposites for highly selective membrane gas separation. J Mater Chem A 6(4):1751–1771

    Google Scholar 

  91. Sanaeepur H, Ebadi Amooghin A, Kargari A, Omidkhah M, Fauzi Ismail A, Ramakrishna S (2019) Interior modification of nano-porous fillers to fabricate high performance mixed matrix membranes. Iran J Chem Eng (IJChE) 16(2):70–94

    Google Scholar 

  92. Kalantari S, Omidkhah M, Amooghin AE, Matsuura T (2020) Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Appl Mater Today 18:100491. https://doi.org/10.1016/j.apmt.2019.100491

    Article  Google Scholar 

  93. Dai Z, Deng J, Aboukeila H, Yan J, Ansaloni L, Mineart KP, Giacinti Baschetti M, Spontak RJ, Deng L (2019) Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water. NPG Asia Mater 11:53. https://doi.org/10.1038/s41427-019-0155-5

    Article  CAS  Google Scholar 

  94. Wahab MA, Sunarti AR (2017) Influence of PVDF/Pebax TFC casting temperature towards CO2\N2 gas separation. Indian J Sci Technol 10:2

    Google Scholar 

  95. Khoshkharam A, Ghayyem MA, Behbahani RM (2017) Laboratory investigation of carbon dioxide separation from methane using a PES/Pebax 1657 composite membrane. Pet Sci Technol 35:471–478

    CAS  Google Scholar 

  96. Nebipasagil A, Park J, Lane OR, Sundell BJ, Mecham SJ, Freeman BD, Riffle JS, McGrath JE (2017) Polyurethanes containing Poly (arylene ether sulfone) and Poly (ethylene oxide) segments for gas separation membranes. Polymer 118:256267

    Google Scholar 

  97. Goh PS, Naim R, Rahbari-Sisakht M, Ismail AF (2019) Modification of membrane hydrophobicity in membrane contactors for environmental remediation. Sep Purif Technol 227:115721

    CAS  Google Scholar 

  98. Xu Y, Goh K, Wang R, Bae TH (2019) A review on polymer-based membranes for gas-liquid membrane contacting processes: current challenges and future direction. Sep Purif Technol 229:115791

    CAS  Google Scholar 

  99. Chuah CY, Kim K, Lee J, Koh DY, Bae TH (2019) CO2 absorption using membrane contactors: recent progress and future perspective. Ind Eng Chem Res 59(15):6773–6794

    Google Scholar 

  100. Zhao S, Feron PH, Deng L, Favre E, Chabanon E, Yan S, Qi H (2016) Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments. J Membr Sci 511:180–206

    CAS  Google Scholar 

  101. Kianfar E (2018) Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem 91:1711–1720. https://doi.org/10.1134/S1070427218100208

    Article  CAS  Google Scholar 

  102. Kianfar E (2019) Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ J Appl Chem 92:1094–1101. https://doi.org/10.1134/S1070427219080068

    Article  CAS  Google Scholar 

  103. Kianfar E (2019) Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ J Appl Chem 92:933–939. https://doi.org/10.1134/S1070427219070085

    Article  CAS  Google Scholar 

  104. Kianfar E, Shirshahi M, Kianfar F et al (2018) Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON 10:2617–2625. https://doi.org/10.1007/s12633-018-9798-z

    Article  CAS  Google Scholar 

  105. Kianfar F, Kianfar E (2019) Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J Inorg Organomet Polym 29:2176–2185. https://doi.org/10.1007/s10904-019-01177-1

    Article  CAS  Google Scholar 

  106. Kianfar E, Azimikia R, Faghih SM (2020) Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal Lett 150:2322–2330. https://doi.org/10.1007/s10562-020-03116-z

    Article  CAS  Google Scholar 

  107. Kianfar E (2019) Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91:415–429. https://doi.org/10.1007/s10971-019-05012-4

    Article  CAS  Google Scholar 

  108. Liu H, Kianfar E (2020) Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett. https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  109. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2019) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int J Chem React Eng 17(2):1–10

    CAS  Google Scholar 

  110. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Int J Appl CeramTechnol 15:734–741

    CAS  Google Scholar 

  111. Kianfar E, Salimi M, Pirouzfar V, Koohestani B (2018) Int J of Chem Reactor Engineering 16:1–7

    Google Scholar 

  112. Kianfar E (2019) Comparison and assessment of Zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev Inorg Chem 39(3):157–177

    CAS  Google Scholar 

  113. E. Kianfar and M. Salimi, (2020) A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in chemistry research, Volume 59:Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc., NY

  114. Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Poly (ionic liquid) s as new materials for CO2 absorption. J Polym Sci Part A: Polym Chem 43(22):5477–5489

    CAS  Google Scholar 

  115. Tang J, Tang H, Sun H, Radosz M, Shen Y (2005) Low-pressure CO2 sorption in ammonium based poly(Ionic Liquid)s. Polymer 46:12460–12467

    CAS  Google Scholar 

  116. Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetra alkyl ammonium-based poly(Ionic Liquid). Energy Environ Sci 3:1961–1972

    CAS  Google Scholar 

  117. Ren J, Wang R, Zhang HY, Li Z, Liang DT, Tay JH (2006) Effect of PVDF dope rheology on the structure of hollow fiber membranes used for CO2 capture. J Membr Sci 281:334–344

    CAS  Google Scholar 

  118. Qi Z, Cussler EL (1985) Microporous hollow fibers for gas absorption. Part 1: mass transfer in the liquid. J Membr Sci 23:321–332

    CAS  Google Scholar 

  119. Qi Z, Cussler EL (1985) Microporous hollow fibers for gas absorption. part 2: mass transfer across the membrane. J Membr Sci 23:333–345

    CAS  Google Scholar 

  120. E Kianfar and A Razavi, (2020) Zeolite catalyst based selective for the process MTG: a review: In book: zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY

  121. Ehsan Kianfar, Zeolites: Properties, Applications, Modification and Selectivity: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA.2020.

  122. Kianfar E, Hajimirzaee S, Mehr AS (2020) Zeolite-based catalysts for methanol to gasoline process: a review. Microchem J 156:104822

    CAS  Google Scholar 

  123. Kianfar E, Baghernejad M, Rahimdashti Y (2015) Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum 7:1671–1685

    Google Scholar 

  124. Ehsan kianfar. (2020) Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing, p. 1–80

  125. Kianfar E, Viet C (2021) Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J Market Res 10:1437–1461

    CAS  Google Scholar 

  126. Nmousavian SS, Faravar P, Zarei Z, Zimikia R, Monjezi MG, Kianfar E (2020) Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J Environ Chem Eng 8(4):103946

    Google Scholar 

  127. Yang Z, Zhang L, Zhou Y, Wang H, Wen L, Kianfar E (2020) Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: a review. Rev Inorg Chem 40(3):91–105. https://doi.org/10.1515/revic-2020-0003

    Article  CAS  Google Scholar 

  128. Gao C, Liao J, Jingqiong Lu, Ma J, Kianfar E (2020) The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev Inorg Chem. https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  129. E. Kianfar, M. Salimi, B. Koohestani (2020) Zeolite CATALYST: a review on the production of light olefins. Publisher: Lambert Academic Publishing, p. 1–116

  130. E. Kianfar( 2020) Investigation on catalysts of “Methanol to light Olefins”. Publisher: Lambert Academic Publishing, p. 1–168

  131. Kianfar E (2020) Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers. Vol. 5, Chapter 3, pp. 16–21

  132. Kianfar E (2020) Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology, MedDocs Publishers. Vol. 5, Chapter 4, pp. 22–25

  133. Kianfar E (2020) Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology, MedDocs Publishers. Vol. 4, Chapter 4, pp. 1–7.

  134. Kianfar E, Mazaheri H (2020) Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem Eng 1:83–91

    CAS  Google Scholar 

  135. Kianfar E (2020) Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem Eng 1:69–74

    CAS  Google Scholar 

  136. Ehsan Kianfar; Mahmoud Salimi; Behnam Koohestani (2020) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem Eng 1:75–82

    Google Scholar 

  137. Kianfar E (2020) An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem Eng 1:92–103

    CAS  Google Scholar 

  138. Ehsan Kianfar; Sajjad Mafi (2020) Ionic liquids: properties, application, and synthesis. Fine Chem Eng 2:22–31

    Google Scholar 

  139. Faghih SM, Kianfar E (2018) Modeling of fluid bed reactor of ethylene dichloride production in Abadan petrochemical based on three-phase hydrodynamic model. Int J Chem React Eng 16:1–14

    Google Scholar 

  140. E. Kianfar, H. Mazaheri (2020) Methanol to gasoline: a sustainable transport fuel, In book: advances in chemistry research. Vol. 66, Edition: james C.taylor, Chapter: 4Publisher: Nova science publishers, Inc., NY

  141. Kianfar (2020) “A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: a review, “In advances in chemistry research, Vol. 63, Chapter 2 (NewYork: Nova Science Publishers, Inc.)

  142. E. Kianfar, S. Hajimirzaee, S. Mohammad Faghih, et al. (2020) Polyvinyl chloride + nanoparticles titanium oxide membrane for separation of O2/N2. Advances in nanotechnology. Inc. NY: Nova science publishers

  143. E. Kianfar (2020) Synthesis of characterization nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in chemistry research. Inc. NY, Nova Science Publishers,

  144. E. Kianfar (2020) CO2 Capture with Ionic Liquids: A Review. Advances in Chemistry Research. Volume 67Publisher: Nova Science Publishers, Inc., NY

  145. E. Kianfar (2020)Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in chemistry research. Vol. 63, Chapter: 4, Nova Science Publishers, Inc., NY

  146. Ehsan Kianfar (2020) Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in chemistry research. Vol. 62, Edition: James C. Taylor .Chapter: 8.Publisher: Nova Science Publishers, Inc., NY.

  147. Kianfar M, Kianfar F, Kianfar E (2016) The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am J Oil Chem Technol 4(1):29–44

    Google Scholar 

  148. Kianfar F, Moghadam SRM, Kianfar E (2015) Energy optimization of ilam gas refinery unit 100 by using HYSYS refinery software. Indian J Sci Technol 8(S9):431–436

    Google Scholar 

  149. Kianfar E (2015) Production and identification of vanadium oxide nanotubes. Indian J Sci Technol 8(S9):455–464

    Google Scholar 

  150. Kianfar F, Moghadam SRM, Kianfar E (2015) Synthesis of spiro pyran by using silica-bonded N-Propyldiethylenetriamine as recyclable basic catalyst. Indian J Sci Technol 8(11):68669

    Google Scholar 

  151. Kianfar E (2019) Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem J 145:966–978

    CAS  Google Scholar 

  152. Hajimirzaee S, Mehr AS, Kianfar E (2020) Modified ZSM-5 Zeolite for conversion of LPG to aromatics. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2020.1833048

    Article  Google Scholar 

  153. Kianfar E (2021) Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet Chem 61:527–537. https://doi.org/10.1134/S0965544121050030

    Article  CAS  Google Scholar 

  154. Huang X, Zhu Y, Kianfar E (2021) Nano biosensors: properties, applications and electrochemical techniques. J Market Res 12:1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  CAS  Google Scholar 

  155. Kianfar E (2021) Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19:159. https://doi.org/10.1186/s12951-021-00896-3

    Article  CAS  Google Scholar 

  156. Kianfar E (2021) Magnetic nanoparticles in targeted drug delivery: a review. J Supercond Novel Magn. https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  157. Qazi S, Gómez-Coma L, Albo J, Druon-Bocquet S, Irabien A, Younas M, Sanchez-Marcano J (2020) Mathematical modeling of CO2 absorption with ionic liquids in a membrane contactor, study of absorption kinetics and influence of temperature. J Chem Technol Biotechnol 95:1844–1857. https://doi.org/10.1002/jctb.6265

    Article  CAS  Google Scholar 

  158. Qazi S, Gómez-Coma L, Albo J, Druon-Bocquet S, Irabien A, Sanchez-Marcano J (2020) CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: influence of membrane wetting and process parameters. Sep Purif Technol 233:115986

    CAS  Google Scholar 

  159. Sohaib Q, Vadillo JM, Gómez-Coma L, Albo J, Druon-Bocquet S, Irabien A, Sanchez-Marcano J (2020) Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach. Int J Greenhouse Gas Control 99:103076

    CAS  Google Scholar 

  160. Albo J, Luis P, Irabien A (2011) Absorption of coal combustion flue gases in ionic liquids using different membrane contactors. Desalin Water Treat 27(1–3):54–59

    CAS  Google Scholar 

  161. Albo J, Luis P, Irabien A (2010) Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Ind Eng Chem Res 49(21):11045–11051

    CAS  Google Scholar 

  162. Sohaib Q, Vadillo JM, Gómez-Coma L, Albo J, Druon-Bocquet S, Irabien A, Sanchez-Marcano J (2020) CO2 capture with room temperature ionic liquids; coupled absorption/desorption and single module absorption in membrane contactor. Chem Eng Sci 223:115719

    CAS  Google Scholar 

  163. Albo J, Irabien A (2012) Non-dispersive absorption of CO2 in parallel and cross-flow membrane modules using EMISE. J Chem Technol Biotechnol 87(10):1502–1507

    CAS  Google Scholar 

  164. Syah R, Zahar M, Kianfar E (2021) Nanoreactors: properties, applications and characterization. Int J Chem React Eng 19(10):981–1007. https://doi.org/10.1515/ijcre-2021-0069

    Article  CAS  Google Scholar 

  165. Isola LA, Chen TC, Elveny M, Alkaim AF, Thangavelu L, Kianfar E (2021) Application of micro and porous materials as nano-reactors. Rev Inorg Chem. https://doi.org/10.1515/revic-2021-0007

    Article  Google Scholar 

  166. Kianfar E (2021) Иccлeдoвaниe влияния тeмпepaтypы и вpeмeни кpиcтaллизaции пpи cинтeзe кaтaлизaтopa SAPO-34 для пoлyчeния лeгкиx oлeфинoв. Heфтexимия 61(3):430–442. https://doi.org/10.31857/S002824212103014X

    Article  Google Scholar 

  167. Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Future Gener Comput Syst 111:175–198

    Google Scholar 

  168. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Google Scholar 

  169. Xu Y et al (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    Google Scholar 

  170. Zhao X et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    CAS  PubMed  Google Scholar 

  171. Li C et al (2018) Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 153:211–225

    PubMed  Google Scholar 

  172. Wang M et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  173. Xia J et al (2017) Ultrasound-based differentiation of malignant and benign thyroid nodules: an extreme learning machine approach. Comput Methods Programs Biomed 147:37–49

    PubMed  Google Scholar 

  174. Shen L et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75

    Google Scholar 

  175. Chen H-L et al (2016) An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳ s disease. Neurocomputing 184:131–144

    Google Scholar 

  176. Hu L et al (2015) An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Comput Biol Med 59:116–124

    PubMed  Google Scholar 

  177. Xu X, Chen HL (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807

    Google Scholar 

  178. Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 25:26

    Google Scholar 

  179. Zhang Y et al (2021) Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing. https://doi.org/10.1016/j.neucom.2020.10.038

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhao D et al (2021) Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl-Based Syst 216:106510

    Google Scholar 

  181. Tu J et al (2021) Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowl-Based Syst 212:106642

    Google Scholar 

  182. Shan W et al (2021) Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl-Based Syst 214:106728

    Google Scholar 

  183. Yu C et al (2021) SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng Comput. https://doi.org/10.1007/s00366-020-01234-1

    Article  Google Scholar 

  184. Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl-Based Syst 213:106684

    Google Scholar 

  185. Zhao X et al (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    CAS  Google Scholar 

  186. Yu H, Li W, Chen C, Liang J, Gui W, Wang M, Chen H (2020) Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng Comput 38(2–3):1–29

    Google Scholar 

  187. Wang H, Song T, Li Z, Qiu J, Zhao Y, Zhang H, Wang J (2021) Exceptional high and reversible ammonia uptake by two dimension few-layer BiI3 nanosheets. ACS Appl Mater Interfaces 13(22):25918–25925. https://doi.org/10.1021/acsami.1c03261

    Article  CAS  PubMed  Google Scholar 

  188. Wu H, Zhang F, Zhang Z, Hou L (2022) Atomization and droplet dynamics of a gas-liquid two-phase jet under different mass loading ratios. Intl J Multiph Flow 151:104043. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104043

    Article  CAS  Google Scholar 

  189. Hu Y, Yang G, Zhou J, Li H, Shi L, Xu X, Zhuang X (2022) Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano. https://doi.org/10.1021/acsnano.1c11301

    Article  PubMed  PubMed Central  Google Scholar 

  190. Liu H, Wang Y, Li Q, Yang N, Wang Z, Wang Q (2022) Research on the evolution characteristics of oxygen-containing functional groups during the combustion process of the torrefied corn stalk. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2022.106343

    Article  Google Scholar 

  191. Zhang M, Zhu H, Xi B, Tian Y, Sun X, Zhang H, Wu B (2022) Surface Hydrophobic modification of biochar by silane coupling agent KH-570. Processes 10(2):301. https://doi.org/10.3390/pr10020301

    Article  CAS  Google Scholar 

  192. Liu Y, Tian J, Zheng W, Yin L (2022) Spatial and temporal distribution characteristics of haze and pollution particles in China based on spatial statistics. Urb Clim 41:101031. https://doi.org/10.1016/j.uclim.2021.101031

    Article  Google Scholar 

  193. Tian J, Liu Y, Zheng W, Yin L (2021) Smog prediction based on the deep belief - BP neural network model (DBN-BP). Urb Clim. https://doi.org/10.1016/j.uclim.2021.101078

    Article  Google Scholar 

  194. Bai B, Rao D, Chang T, Guo Z (2019) A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J Hydrol (Amst) 578:124080. https://doi.org/10.1016/j.jhydrol.2019.124080

    Article  CAS  Google Scholar 

  195. Zhang K, Qiu L, Tao J, Zhong X, Lin Z, Wang R, Liu Z (2021) Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205:105722. https://doi.org/10.1016/j.hydromet.2021.105722

    Article  CAS  Google Scholar 

  196. Li Y, Macdonald DD, Yang J, Qiu J, Wang S (2020) Point defect model for the corrosion of steels in supercritical water: part I, film growth kinetics. Corros Sci 163:108280. https://doi.org/10.1016/j.corsci.2019.108280

    Article  CAS  Google Scholar 

  197. Zhang Z, Yang F, Zhang H, Zhang T, Wang H, Xu Y, Ma Q (2021) Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater Charact 171:110732. https://doi.org/10.1016/j.matchar.2020.110732

    Article  CAS  Google Scholar 

  198. Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Su R, Sang Y, Wang Y (2021) Enhanced removal of Co (II) and Ni (II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci Total Environ 756:143871. https://doi.org/10.1016/j.scitotenv.2020.143871

    Article  CAS  PubMed  Google Scholar 

  199. Chen R, Cheng Y, Wang P, Wang Y, Wang Q, Yang Z, Tang C, Xiang S, Luo S, Huang S, Su C (2021) Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be (II) from Be(NH2)2 complexing solutions. Chem Eng J 421:129682. https://doi.org/10.1016/j.cej.2021.129682

    Article  CAS  Google Scholar 

  200. Gao T, Li C, Yang M, Zhang Y, Jia D, DingDebnathYuSaidWang WSTZJ (2021) Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Process Technol 290:116976. https://doi.org/10.1016/j.jmatprotec.2020.116976

    Article  CAS  Google Scholar 

  201. Fan Z, Ji PP, Zhang J, Segets D, Chen DR, Chen SC (2021) Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J Membr Sci 635:119503. https://doi.org/10.1016/j.memsci.2021.119503

    Article  CAS  Google Scholar 

  202. Raya I, Kzar HH, Mahmoud ZH, Al Ayub Ahmed A, Ibatova AZ, Kianfar E (2021) A review of gas sensors based on carbon nanomaterial. Carbon Lett. https://doi.org/10.1007/s42823-021-00276-9

    Article  Google Scholar 

  203. Pea-Assounga JBB, Yao H, Peprah PA, Shaibu A (2020) Analysis of the link between CO2 outflows, energy utilization, and economic development in a developing country: evidence from Republic of Congo. Int J Sustain Energy Environ Res 9(1):17–33. https://doi.org/10.18488/journal.13.2020.91.17.33

    Article  Google Scholar 

  204. Asayesh K (2021) Assessing the level of CO2 emission in Iran via the econometric approach. Casp J Environ Sci 19(1):173–181. https://doi.org/10.22124/cjes.2021.4526

    Article  Google Scholar 

  205. Shirneshan A, Almassi M, Ghobadian B, Najafi G (2016) Modeling the effects of biodiesel-diesel fuel blends on CO2 emission of a diesel engine by response surface methodology. Casp J Environ Sci 14(3):227–238

    Google Scholar 

  206. Nabavi-Pelesaraei A, Sadeghzadeh A, Payman MH, Mobtaker HG (2013) An analysis of energy use, Co2 emissions and relation between energy inputs and yield of hazelnut production in Guilan Province of Iran. Int J Adv Biol Biomed Res 1(12):1601–1613

    CAS  Google Scholar 

  207. Samimi A, Zarinabadi S, Bozorgian A, Amosoltani A, Esfahani MT, Kavousi K (2020) Advances of membrane technology in acid gas removal in industries. Prog Chem Biochem Res 3(1):46–54. https://doi.org/10.33945/SAMI/PCBR.2020.1.6

    Article  Google Scholar 

  208. Talavari A, Ghanavati B, Azimi A, Sayyahi S (2021) Pvdf/ Mwcnt hollow fiber mixed matrix membranes for gas absorption by Al2o3 nanofluid. Prog Chem Biochem Res 4(2):177–190. https://doi.org/10.22034/pcbr.2021.270178.1177

    Article  CAS  Google Scholar 

  209. Xu YP, Ouyang P, Xing SM, Qi LY, Jafari H (2021) Optimal structure design of a PV/FC HRES using amended water strider algorithm. Energy Rep 7:2057–2067. https://doi.org/10.1016/j.egyr.2021.04.016

    Article  Google Scholar 

  210. Al Janaby N, Al Dergazly A (2020) Fabrication of multi-mode tip fiber sensor based on surface plasmon resonance (SPR). Sustain Eng Innov 2(1):10–17

    Google Scholar 

  211. Sami P, Sani MH, Behzadnia H, Shen C (2020) Refractive index sensor for detection of N2, He and CO2 gases based on square resonance nanocavity in 2D photonic crystal. J Res Sci, Eng Technol 8(4):74–83

    Google Scholar 

  212. Mirabootalebi SO, Fakhrabadi GHA, Mirahmadi R (2021) Carbon via ball milling of graphite and prediction of its crystallite size through ANN. J Appl Organomet Chem 1(2):76–85

    Google Scholar 

  213. Zhao TH, Wang MK, Hai GJ, Chu YM (2022) Landen inequalities for Gaussian hypergeometric function. Serie A Matemáticas Rev de la Real Acad de Cienc Exact, Físicas y Nat. https://doi.org/10.1007/s13398-021-01197-y

    Article  Google Scholar 

  214. Nazeer M, Hussain F, IjazKhan M, ur Rehman A, El Zahar ER, Chu Y-M, Malik MY (2022) Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput 420:126868. https://doi.org/10.1016/j.amc.2021.126868

    Article  Google Scholar 

  215. Chu Y-M, Shankaralingappa BM, Gireesha BJ, Alzahrani F, Ijaz Khan M, Khan SU (2022) Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput 419:126883. https://doi.org/10.1016/j.amc.2021.126883

    Article  Google Scholar 

  216. Zhao T-H, Ijaz Khan M, Chu Y-M (2021) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Methods Appl Sci. https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  217. Zhao T-H, He Z-Y, Chu Y-M (2021) Sharp bounds for the weighted H"{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput Methods Funct Theory 21(3):413–426. https://doi.org/10.1007/s40315-020-00352-7

    Article  Google Scholar 

  218. Zhao T-H, Wang M-K, Chu Y-M (2021) Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal 15(2):701–724. https://doi.org/10.7153/jmi-2021-15-50

    Article  Google Scholar 

  219. Zhao TH, Wang MK, Chu YM (2021) Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev de la Real Acad de Ciencias Exact, Físicas y Nat. Serie A. Mat 115(2):1–13. https://doi.org/10.1007/s13398-020-00992-3

    Article  Google Scholar 

  220. Chu H-H, Zhao T-H, Chu Y-M (2020) Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca 70(5):1097–1112. https://doi.org/10.1515/ms-2017-0417

    Article  Google Scholar 

  221. Zhao T-H, He Z-Y, Chu Y-M (2020) On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math 5(6):6479–6495. https://doi.org/10.3934/math.2020418

    Article  Google Scholar 

  222. Zhao T-H, Wang M-K, Chu Y-M (2020) A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math 5(5):4512–4528. https://doi.org/10.3934/math.2020290

    Article  Google Scholar 

  223. Zhao TH, Shi L, Chu YM (2020) Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 114(2):1–14. https://doi.org/10.1007/s13398-020-00825-3

    Article  Google Scholar 

  224. Zhao TH, Zhou BC, Wang MK, Chu YM (2019) On approximating the quasi-arithmetic mean. J Inequal Appl 2019(1):1–12. https://doi.org/10.1186/s13660-019-1991-0

    Article  CAS  Google Scholar 

  225. Zhao TH, Wang MK, Zhang W, Chu YM (2018) Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl 2018(1):1–15. https://doi.org/10.1186/s13660-018-1848-y

    Article  Google Scholar 

  226. Chu Y-M, Zhao T-H (2016) Concavity of the error function with respect to Hölder means. Math Inequal Appl 19(2):589–595. https://doi.org/10.7153/mia-19-43

    Article  Google Scholar 

  227. Zhao TH, Shen ZH, Chu YM (2021) Sharp power mean bounds for the lemniscate type means. Rev de la Real Acad de Cienc Exact, Físicas y Nat. Serie A. Mat 115(4):1–16. https://doi.org/10.1007/s13398-021-01117-0

    Article  Google Scholar 

  228. Wang M-K, Hong M-Y, Xu Y-F, Shen Z-H, Chu Y-M (2020) Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal 14(1):1–21. https://doi.org/10.7153/jmi-2020-14-01

    Article  Google Scholar 

  229. Xu HZ, Qian WM, Chu YM (2022) Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables. Rev de la Real Acad de Cienc Exact, Físicas y Nat. Serie A. Mat 116(1):1–19. https://doi.org/10.1007/s13398-021-01162-9

    Article  Google Scholar 

  230. Karthikeyan K, Karthikeyan P, Baskonus HM, Venkatachalam K, Chu Y-M (2021) Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math Methods Appl Sci. https://doi.org/10.1002/mma.7954

    Article  Google Scholar 

  231. Chu YM, Nazir U, Sohail M, Selim MM, Lee JR (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract 5(3):119. https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  232. Rashid S, Sultana S, Karaca Y, Khalid A, Chu YM (2022) Some further extensions considering discrete proportional fractional operators. Fractals 30(01):2240026. https://doi.org/10.1142/S0218348X22400266

    Article  Google Scholar 

  233. Zhao T-H, Qian W-M, Chu Y-M (2021) Sharp power mean bounds for the tangent and hyperbolic sine means. J Math Inequal 15(4):1459–1472. https://doi.org/10.7153/jmi-2021-15-100

    Article  Google Scholar 

  234. Zhao T-H, Qian W-M, Chu Y-M (2021) On approximating the arc lemniscate functions. Indian J Pure Appl Math. https://doi.org/10.1007/s13226-021-00016-9

    Article  Google Scholar 

  235. Hajiseyedazizi SN, Samei ME, Alzabut J, Chu YM (2021) On multi-step methods for singular fractional q-integro-differential equations. Open Math 19(1):1378–1405. https://doi.org/10.1515/math-2021-0093

    Article  Google Scholar 

  236. Jin F, Qian ZS, Chu YM, ur Rahman, M. (2022) On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput 12(2):790–806. https://doi.org/10.11948/20210357

    Article  Google Scholar 

  237. Rashid S, Abouelmagd EI, Khalid A, Farooq FB, Chu YM (2022) Some recent developments on dynamical ℏ-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals 30(02):2240110. https://doi.org/10.1142/S0218348X22401107

    Article  Google Scholar 

  238. Wang FZ, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu YM (2022) Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2):2240051. https://doi.org/10.1142/S0218348X22400515

    Article  Google Scholar 

  239. Zhao T-H, Bhayo BA, Chu Y-M (2021) Inequalities for generalized Grötzsch ring function. Comput Methods Funct Theory. https://doi.org/10.1007/s40315-021-00415-3

    Article  Google Scholar 

  240. Rashid S, Abouelmagd EI, Sultana S, Chu YM (2022) new developments in weighted n-fold type inequalities via discrete generalized ˆ h-proportional fractional operators. Methods 9:22. https://doi.org/10.1142/S0218348X22400564

    Article  Google Scholar 

  241. Chu Y-M, Bashir S, Ramzan M, Malik MY (2022) Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  242. Qian W-M, Chu H-H, Wang M-K, Chu Y-M (2022) Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J Math Inequal 16(1):127–141. https://doi.org/10.7153/jmi-2022-16-10

    Article  Google Scholar 

  243. Zhao T-H, Chu H-H, Chu Y-M (2022) Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n=-1, 1, 3$. J Math Inequal 16(1):157–168. https://doi.org/10.7153/jmi-2022-16-12

    Article  Google Scholar 

  244. Zhao T-H, Wang M-K, Dai Y-Q, Chu Y-M (2022) On the generalized power-type Toader mean. J Math Inequal 16(1):247–264. https://doi.org/10.7153/jmi-2022-16-18

    Article  Google Scholar 

  245. Iqbal SA, Hafez MG, Chu YM, Park C (2022) Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J Appl Anal Comput 12(2):770–789. https://doi.org/10.11948/20210324

    Article  Google Scholar 

  246. Musa AA, Salim FB, Shiaka GP, Muhammad M, Nafisa B, Surayya MM, SaadatuHauwaGayusGumel AYSDRAM (2021) Influence of reaction temperature on bioethanol production by saccharomyces cerevisiae using cassava as substrate. Int J Sustain Energy Environ Res 10(1):9–16. https://doi.org/10.18488/journal.13.2021.101.9.16

    Article  Google Scholar 

  247. Jahanbin B, Davoodnia A, Behmadi H, Tavakoli-Hoseini N (2012) Polymer support immobilized acidic ionic liquid: preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bull Korean Chem Soc 33(7):2140–2144

    CAS  Google Scholar 

  248. Rikani AS (2021) Numerical analysis of free heat transfer properties of flat panel solar collectors with different geometries. J Res Sci, Eng Technol 9(01):95–116

    Google Scholar 

  249. Eldo C, Riya K, Anees SM, Rajiniganth E (2019) Treatment of textile plant effluent by using a heat exchanger. Int J Commun Comput Technol 7(Suppl 1):27–29. https://doi.org/10.31838/ijccts/07.SP01.06

    Article  Google Scholar 

  250. Patel J, Tandel J, Chhalotiya U, Patel K (2021) Simultaneous quantification of minoxidil and finasteride in bulk and pharmaceutical dosage fORM by RP-HPLC method. Eur Chem Bull 10(4):237–241

    CAS  Google Scholar 

  251. Parchebaf A, Nojameh G (2020) Modified nano-Γ-alumina with 2, 4-dinitrophenyl hydrazine as an efficient adsorbent for the removal of Everzol red 3bs dye from aqueous solutions. Eurasian Chem Commun 2(4):475–490

    Google Scholar 

  252. Albadi J, allahSamimirezaMomeni HA (2020) Alumina-supported cobalt nanoparticles efficiently catalyzed the synthesis of chromene derivatives under solvent-free condition. Chem Methodol 4(5):565–571

    CAS  Google Scholar 

  253. Raya I, Kzar HH, Mahmoud ZH et al (2022) A review of gas sensors based on carbon nanomaterial. Carbon Lett 32:339–364. https://doi.org/10.1007/s42823-021-00276-9

    Article  Google Scholar 

  254. Syah R, Zahar M, Kianfar E (2021) Nanoreactors: properties, applications and characterization. Int J Chem Reactor Eng 19(10):981–1007. https://doi.org/10.1515/ijcre-2021-0069

    Article  CAS  Google Scholar 

  255. Majdi HS, Latipov ZA, Borisov V et al (2021) Nano and battery anode: a review. Nanoscale Res Lett 16:177. https://doi.org/10.1186/s11671-021-03631-x

    Article  PubMed  PubMed Central  Google Scholar 

  256. Bokov D, Jalil AT, Chupradit S, Suksatan W, Ansari MJ, Shewael IH, Valiev GH, Kianfar E (2021) Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng 2021:1–21. https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  257. Ansari MJ, Kadhim MM, Hussein BA et al (2022) Synthesis and stability of magnetic nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  258. Chupradit S, Kavitha M, Suksatan W, Ansari MJ, Al Mashhadani ZI, Kadhim MM, Mustafa YF, SKianfar SE (2022) Morphological control: properties and applications of metal nanostructures. Adv Mater Sci Eng. https://doi.org/10.1155/2022/1971891

    Article  Google Scholar 

  259. Salah Aldeen ODA, Mahmoud MZ, Majdi HS, Mutlak DA, Fakhriddinovich Uktamov K, Kianfar E (2022) Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha. Adv Mater Sci Eng 2022:1–22. https://doi.org/10.1155/2022/6165180

    Article  CAS  Google Scholar 

  260. Suryatna A, Raya I, Thangavelu L, Alhachami FR, Kadhim MM, Altimari US, Mahmoud ZH, Mustafa YF, Kianfar E (2022) A review of high-energy density lithium-air battery technology: investigating the effect of oxides and nanocatalysts. J Chem. https://doi.org/10.1155/2022/2762647

    Article  Google Scholar 

  261. Abdelbasset WK, Jasim SA, Bokov DO et al (2022) Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. https://doi.org/10.1007/s42823-022-00338-6

    Article  Google Scholar 

  262. Jasim SA, Kadhim MM, KN V et al (2022) Molecular junctions: introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz J Phys 52:31. https://doi.org/10.1007/s13538-021-01033-z

    Article  CAS  Google Scholar 

  263. Wang J, Ai K, Lu L (2019) Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. J Mater Chem, Mater Energy Sustain 7(28):16850–16858. https://doi.org/10.1039/C9TA04489B

    Article  CAS  Google Scholar 

  264. Abetua AG, Kebedeb AB (2021) Crushed concrete as adsorptive material for removal of phosphate ions from aqueous solutions. Water Conserv Manage 2(5):40–46. https://doi.org/10.26480/wcm.02.2021.40.46

    Article  Google Scholar 

  265. Chen Z, He X, Ge J, Fan G, Zhang L, Parvez AM, Wang G (2022) Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Ind Crops Prod 186:115269. https://doi.org/10.1016/j.indcrop.2022.115269

    Article  CAS  Google Scholar 

  266. Zhao C, Xi M, Huo J, He C (2021) B-doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field. Phys Chem Chem Phys 23(40):23219–23224. https://doi.org/10.1039/D1CP03943A

    Article  CAS  PubMed  Google Scholar 

  267. Lv B, Wang S, Xu T, Guo F (2021) Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior Mg–6.0Zn–0.5Mn alloy. J Magnes Alloys 9(3):840–852. https://doi.org/10.1016/j.jma.2020.06.018

    Article  CAS  Google Scholar 

  268. Zhang X, Sun X, Lv T, Weng L, Chi M, Shi J, Zhang S (2020) Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J Mater Sci Mater Electron 31(16):13344–13351. https://doi.org/10.1007/s10854-020-03888-5

    Article  CAS  Google Scholar 

  269. Huang BT, Li CH, Zhang YB, Ding WF, Yang M, Yang YY, Zhai H, Xu XF, Wang DZ, Debnath S, Jamil M, Li HN, Ali HM, Gupta MK, Said Z (2021) Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin J Aeronaut 34(6):1–17. https://doi.org/10.1016/j.cja.2020.07.004

    Article  Google Scholar 

  270. Yang M, Li C, Luo L, Li R, Long Y (2021) Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int Commun Heat Mass Transfer 125:105317. https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

    Article  CAS  Google Scholar 

  271. Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D, Li R, Liu Z (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Precis Eng Manuf-Green Technol 8(6):1629–1647. https://doi.org/10.1007/s40684-021-00318-7

    Article  Google Scholar 

  272. Zhao T-H, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu Y-M (2021) A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl Comput Math 20(1):160–176

    Google Scholar 

  273. Zhao T-H, Wang M-K, Chu Y-M (2022) On the bounds of the perimeter of an ellipse. Acta Math Sci 42B(2):491–501. https://doi.org/10.1007/s10473-022-0204-y

    Article  Google Scholar 

  274. Gao T, Li C, Yang M, Zhang Y, Jia D, Ding W, Debnath S, Tianbiao Yu, Said Z, Wang J (2021) Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Process Technol 290:116976. https://doi.org/10.1016/j.jmatprotec.2020.116976

    Article  CAS  Google Scholar 

  275. Duan Z, Li C, Ding W, Zhang Y, Yang M, Gao T, Cao H, Xu X, Wang D, Mao C, Li HN, Kumar GM, Said Z, Debnath S, Jamil M, Ali HM (2021) Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin J Mech Eng 34(1):1–35. https://doi.org/10.1186/s10033-021-00536-9

    Article  CAS  Google Scholar 

  276. Wang Y, Li C, Zhang Y, Yang M, Li B, Dong L, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Precis Eng Manuf-Green Technol 5(2):327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  CAS  Google Scholar 

  277. Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Biological stability of water-based cutting fluids: progress and application. Chin J Mech Eng 35(1):1–24. https://doi.org/10.1186/s10033-021-00667-z

    Article  CAS  Google Scholar 

  278. Liu M, Li C, Zhang Y, An Q, Yang M, Gao T, Mao C, Liu B, Cao H, Xuefeng X, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng 16(4):649–697. https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  279. Gao T, Zhang Y, Li C, Wang Y, An Q, Liu Bo, Said Z, Sharma S (2021) Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci Rep 11:22535. https://doi.org/10.1038/s41598-021-02071-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Gao T, Li C, Wang Y, Liu X, An Q, Li HN, Zhang Y, Cao H, Liu B, Wang D, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos Struct 286:115232. https://doi.org/10.1016/j.compstruct.2022.115232

    Article  CAS  Google Scholar 

  281. Jia D, Zhang Y, Li C, Yang M, Gao T, Said Z, Sharma S (2022) Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol Int 169:107461. https://doi.org/10.1016/j.triboint.2022.107461

    Article  CAS  Google Scholar 

  282. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, SongLiCaoAliZhouSharma ZHNHHMZS (2022) Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng 17(2):1–35. https://doi.org/10.1007/s11465-022-0680-8

    Article  Google Scholar 

  283. Kianfar E, Abed Hussein B, Mahdi AB, Emad Izzat S, Acwin Dwijendra NK, Romero Parra RM, Barboza Arenas LA, Mustafa Y, Yasin G, Thaeer Hammid A (2022) Production, structural properties nano biochar and effects nano biochar in soil: a review. Egypt J Chem 65(12):607–618. https://doi.org/10.21608/ejchem.2022.131162.5772

    Article  Google Scholar 

  284. Kianfar E, Jasim SA, Kzar HH, Sivaraman R, Zaidi M, Alkadir OKA, Safaa FF, Jweeg J, Obaid Aldulaim AK (2022) Engineered nanomaterials, plants, plant toxicity and biotransformation: a review. Egypt J Chem. https://doi.org/10.21608/ejchem.2022.131166.5775

    Article  Google Scholar 

  285. Ansari MJ, Kadhim MM, Hussein BA et al (2022) Synthesis and Stability of Magnetic Nanoparticles. BioNanoScience 12:627–638. https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  286. Hachem K, Ansari MJ, Saleh RO et al (2022) Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review. BioNanoScience 12:1032–1057. https://doi.org/10.1007/s12668-022-00996-w

    Article  Google Scholar 

  287. Smaisim GF, mohammedAbdulhadi DBAM et al (2022) Nanofluids: properties and applications. J Sol-Gel Sci Technol 104:1–35. https://doi.org/10.1007/s10971-022-05859-0

    Article  CAS  Google Scholar 

  288. Kianfar E (2022) The effects of SiO2/Al2O3 and H2O/Al2O3 Molar ratios on SAPO-34 catalyst in the methanol to olefin process. SILICON. https://doi.org/10.1007/s12633-022-02008-8

    Article  PubMed Central  Google Scholar 

  289. Salahdin OD, Sayadi H, Solanki R et al (2022) Graphene and carbon structures and nanomaterials for energy storage. Appl Phys A. https://doi.org/10.1007/s00339-022-05789-2

    Article  Google Scholar 

  290. Trung ND, Huy DTN, Jade Catalan Opulencia M et al (2022) Conductive gels: properties and applications of nanoelectronics. Nanoscale Res Lett 17(1):1–21. https://doi.org/10.1186/s11671-022-03687-3

    Article  CAS  Google Scholar 

  291. Isola LA, Chen T-C, Elveny M, Alkaim AF, Thangavelu L, Kianfar E (2022) Application of micro and porous materials as nano-reactors. Rev Inorg Chem 42(2):121–136. https://doi.org/10.1515/revic-2021-0007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran. Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

Funding

There is no funding to report for this submission.

Author information

Authors and Affiliations

Authors

Contributions

Ehsan Kianfar was contributed to investigation, concept and design, data curation, conceptualization, writing—original draft, reviewing and editing.

Corresponding author

Correspondence to Ehsan Kianfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianfar, E. A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor. Polym. Bull. 80, 11469–11505 (2023). https://doi.org/10.1007/s00289-022-04626-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04626-z

Keywords

Navigation