Skip to main content
Log in

Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The wound environment is a breeding ground for pathogens, and traditional wound dressing materials lack antibacterial properties. In this work, we aimed to develop PVA/chitosan (P/C)-based wound dressing scaffolds with anti-infective properties using Cu2ZnSnS4 quantum dots (CZTS QDs) to prevent infections in the wound. CZTS quantum dots were prepared by a simple hydrothermal process and characterized using appropriate techniques such as TEM, XRD, FTIR spectrum, and UV–Vis absorption spectroscopy. CZTS QDs were subsequently loaded at different concentrations onto PVA/chitosan membranes (0, 1.6, 2.5 and 3.3% w/w, based on the total polymer quantity). The chemical structure, contact angle and mechanical properties of the membranes were analyzed, and their antimicrobial activities and cell viability were also investigated. The cytocompatibility of the membranes and cell morphology was investigated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and SEM. Based on studies on the interactions between membranes and cells, it was determined that incorporation of CZTS QDs into the membrane did not cause toxicity. To the best of our knowledge, this is the first report on loading CZTS QDs into membranes for tissue engineering applications, and the overall findings suggest that CZTS QDs-integrated membranes might have potentially appealing uses as antimicrobial films for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This article has no additional data.

Code availability

Not applicable.

References

  1. Pal P, Das B, Dadhich P, Achar A, Dhara S (2017) Carbon nanodot impregnated fluorescent nanofibers for: in vivo monitoring and accelerating full-thickness wound healing. J Mater Chem B 5:6645–6656. https://doi.org/10.1039/c7tb00684e

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Zheng H, Poh PSP, Machens HG, Schilling AF (2015) Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci 16:15997–16016. https://doi.org/10.3390/ijms160715997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vrana NE, Cahill PA, McGuinness GB (2010) Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions. J Biomed Mater Res Part A 94:1080–1090. https://doi.org/10.1002/jbm.a.32790

    Article  CAS  Google Scholar 

  4. Park J, Lee SJ, Jung TG, Lee JH, Kim WD, Lee JY, Park SA (2021) Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications. Colloids Surf B Biointerfaces 199:111528. https://doi.org/10.1016/j.colsurfb.2020.111528

    Article  CAS  PubMed  Google Scholar 

  5. Güneş S, Tıhmınlıoğlu F (2017) Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol 102:933–943. https://doi.org/10.1016/j.ijbiomac.2017.04.080

    Article  CAS  PubMed  Google Scholar 

  6. Arica TA, Guzelgulgen M, Yildiz AA, Demir MM (2021) Electrospun GelMA fibers and p(HEMA) matrix composite for corneal tissue engineering. Mater Sci Eng C 120:111720. https://doi.org/10.1016/j.msec.2020.111720

    Article  CAS  Google Scholar 

  7. Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 3:267–277. https://doi.org/10.1016/j.bioactmat.2017.11.003

    Article  PubMed  Google Scholar 

  8. Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, Shafei S, Amini E, Farzamfar S, Ai J (2020) Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res Part A 108:2138–2149. https://doi.org/10.1002/jbm.a.36959

    Article  CAS  Google Scholar 

  9. Tra Thanh N, Ho Hieu M, Tran Minh Phuong N, Do Bui Thuan T, Nguyen Thi Thu H, Thai VP, Do Minh T, Nguyen Dai H, Vo VT, Nguyen Thi H (2018) Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 91:318–329. https://doi.org/10.1016/j.msec.2018.05.039

    Article  CAS  Google Scholar 

  10. Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687–12722. https://doi.org/10.1021/ACSNANO.1C04206/ASSET/IMAGES/MEDIUM/NN1C04206_0016.GIF

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Zhang Z, Liang Y, He J, Guo B (2020) Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair. ACS Appl Mater Interfaces 12:35856–35872. https://doi.org/10.1021/ACSAMI.0C08285/SUPPL_FILE/AM0C08285_SI_002.AVI

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Xu H, Zhang M, Yu DG (2021) Electrospun medicated nanofibers for wound healing: review. Membranes (Basel) 11:770. https://doi.org/10.3390/MEMBRANES11100770

    Article  CAS  PubMed  Google Scholar 

  13. Alizadehgiashi M, Nemr CR, Chekini M, Pinto Ramos D, Mittal N, Ahmed SU, Khuu N, Kelley SO, Kumacheva E (2021) Multifunctional 3D-printed wound dressings. ACS Nano 15:12375–12387. https://doi.org/10.1021/ACSNANO.1C04499/SUPPL_FILE/NN1C04499_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  14. Eğri Ö, Erdemir N (2019) Production of Hypericum perforatum oil-loaded membranes for wound dressing material and in vitro tests. Artif Cells Nanomedicine Biotechnol 47:1404–1415. https://doi.org/10.1080/21691401.2019.1596933

    Article  CAS  Google Scholar 

  15. Yilmaz Atay H (2020) Antibacterial activity of chitosan-based systems. Nat Public Heal Emerg Collect. https://doi.org/10.1007/978-981-15-0263-7_15

    Article  Google Scholar 

  16. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. https://doi.org/10.1016/J.IJFOODMICRO.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  17. Mahesh B, Kathyayani D, Channe Gowda D, Mrutunjaya K (2020) Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. J Polym Res 27:1–15. https://doi.org/10.1007/S10965-020-02191-5/FIGURES/12

    Article  Google Scholar 

  18. Mahesh B, Kathyayani D, Channe Gowda D, Sionkowska A, Ramakrishna S (2022) Miscibility and thermal stability of synthetic glutamic acid comprising polypeptide with polyvinyl alcohol: fabrication of nanofibrous electrospun membranes. Mater Chem Phys 281:125847. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125847

    Article  CAS  Google Scholar 

  19. Mahesh B, Nanjundaswamy GS, Kathyayani D, Gowda DC (2019) Siddaramaiah, impact of blend proportion on the miscibility and thermal characteristics of synthetic plastic-derived polypentapeptide with commercially available polyvinyl alcohol. J Polym Environ 27:2267–2280. https://doi.org/10.1007/S10924-019-01511-1/FIGURES/12

    Article  CAS  Google Scholar 

  20. Yudaev P, Mezhuev Y, Chistyakov E (2022) Nanoparticle-containing wound dressing: antimicrobial and healing effects. Gels. https://doi.org/10.3390/gels8060329

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kokila NR, Mahesh B, Roopa KP, Daruka Prasad B, Raj K, Manjula SN, Mruthunjaya K, Ramu R (2022) Thunbergia mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation. J Mol Struct 1255:132455. https://doi.org/10.1016/J.MOLSTRUC.2022.132455

    Article  CAS  Google Scholar 

  22. Gebre SH, Sendeku MG (2019) New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl Sci 1:1–28. https://doi.org/10.1007/s42452-019-0931-4

    Article  CAS  Google Scholar 

  23. Gurav KV, Shin SW, Patil UM, Deshmukh PR, Suryawanshi MP, Agawane GL, Pawar SM, Patil PS, Lee J, Lokhande CD (2014) Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sens Actuators B Chem 190:408–413

    Article  CAS  Google Scholar 

  24. Wang J, Zhang P, Song X, Gao L (2014) Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties. RSC Adv 4:27805–27810

    Article  CAS  Google Scholar 

  25. Li J, Shen J, Li Z, Li X, Sun Z, Hu Z, Huang S (2013) Wet chemical route to the synthesis of kesterite Cu2ZnSnS4 nanocrystals and their applications in lithium ion batteries. Mater Lett 92:330–333

    Article  CAS  Google Scholar 

  26. Saleem M, Tanveer F, Ahmad A, Gilani SA (2018) Correlation between shoulder pain and functional disability among nurses. Rawal Med J 43:483–485. https://doi.org/10.1002/app

    Article  Google Scholar 

  27. Hou X, Li Y, Yan J-J, Wang C-W (2014) Highly efficient photocatalysis of p-type Cu2ZnSnS4 under visible-light illumination. Mater Res Bull 60:628–633

    Article  CAS  Google Scholar 

  28. Kannan AG, Manjulavalli TE, Chandrasekaran J (2016) Influence of solvent on the properties of CZTS nanoparticles. Procedia Eng 141:15–22

    Article  CAS  Google Scholar 

  29. Jain S, Verma S, Singh SP, Sharma SN (2019) An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens Bioelectron 127:135–141

    Article  CAS  PubMed  Google Scholar 

  30. Yang H, Jauregui LA, Zhang G, Chen YP, Wu Y (2012) Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett 12:540–545

    Article  CAS  PubMed  Google Scholar 

  31. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  32. Li G, Zhai J, Li D, Fang X, Jiang H, Dong Q, Wang E (2010) One-pot synthesis of monodispersed ZnS nanospheres with high antibacterial activity. J Mater Chem 20:9215–9219

    Article  CAS  Google Scholar 

  33. Fakhri A, Behrouz S, Pourmand M (2015) Synthesis, photocatalytic and antimicrobial properties of SnO2, SnS2 and SnO2/SnS2 nanostructure. J Photochem Photobiol B Biol 149:45–50

    Article  CAS  Google Scholar 

  34. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M (2020) Metal/metal oxide nanocomposites for bactericidal effect: a review. Chemosphere 272:128607

    Article  PubMed  Google Scholar 

  35. Kumar RS, Maddirevula S, Easwaran M, Dananjaya SHS, Kim M-D (2015) Antibacterial activity of novel Cu2ZnSnS4 nanoparticles against pathogenic strains. RSC Adv 5:106400–106405

    Article  CAS  Google Scholar 

  36. Ocakoglu K, Dizge N, Colak SG, Ozay Y, Bilici Z, Yalcin MS, Ozdemir S, Yatmaz HC (2021) Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: improvement of antifouling and self-cleaning performance. Colloids Surf A Physicochem Eng Asp 616:126230

    Article  CAS  Google Scholar 

  37. Das S, Alam I, Raiguru J, Subramanyam B, Mahanandia P (2019) A facile method to synthesize CZTS quantum dots for solar cell applications. Phys E Low Dimens Syst Nanostruct 105:19–24

    Article  CAS  Google Scholar 

  38. Chen S-L, Xu A-C, Tao J, Tao H-J, Shen Y-Z, Zhu L-M, Jiang J-J, Wang T, Pan L (2016) In situ synthesis of two-dimensional leaf-like Cu2ZnSnS4 plate arrays as a Pt-free counter electrode for efficient dye-sensitized solar cells. Green Chem 18:2793–2801

    Article  CAS  Google Scholar 

  39. Kevin P, Malik MA, O’Brien P, Cameron J, Taylor RGD, Findlay NJ, Inigo AR, Skabara PJ (2016) Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors. J Mater Chem C 4:5109–5115

    Article  CAS  Google Scholar 

  40. Cattley CA, Cheng C, Fairclough SM, Droessler LM, Young NP, Warner JH, Smith JM, Assender HE, Watt AAR (2013) Low temperature phase selective synthesis of Cu2ZnSnS4 quantum dots. Chem Commun 49:3745–3747

    Article  CAS  Google Scholar 

  41. Liu WC, Guo BL, Wu XS, Zhang FM, Mak CL, Wong KH (2013) Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 1:3182–3186

    Article  CAS  Google Scholar 

  42. Bai B, Kou D, Zhou W, Zhou Z, Wu S (2015) Application of quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells based on the hydrolysis approach. Green Chem 17:4377–4382

    Article  CAS  Google Scholar 

  43. Tang T, Xu X, Wang Z, Tian J, Yang Y, Ou C, Bao H, Liu T (2019) Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapy. Chem Commun 55:13148–13151. https://doi.org/10.1039/C9CC07762F

    Article  CAS  Google Scholar 

  44. Colak SG, Sezer CV, Demirdogen RE, Ince M, Emen FM, Ocakoglu K, Kutlu HM (2021) Investigation of in vitro activities of Cu2ZnSnS4 nanoparticles in human non-small cell lung cancer. Mater Today Commun 27:102304

    Article  CAS  Google Scholar 

  45. Zhou X, Meng W, Dong C, Liu C, Qiu Z, Qi J, Chen J, Wang M (2015) Cu2ZnSnS4 quantum dots as effective electron acceptors for hybrid solar cells with a broad spectral response. RSC Adv 5:90217–90225

    Article  CAS  Google Scholar 

  46. Ceylan S (2021) Propolis loaded and genipin-crosslinked PVA/chitosan membranes; characterization properties and cytocompatibility/genotoxicity response for wound dressing applications. Int J Biol Macromol 181:1196–1206. https://doi.org/10.1016/j.ijbiomac.2021.05.069

    Article  CAS  PubMed  Google Scholar 

  47. Aydemir C, Yenidoğan S, Karademir A, Arman Kandirmaz E (2018) The examination of vegetable- and mineral oil-based inks’ effects on print quality: green printing effects with different oils. J Appl Biomater Funct Mater 16:137–143. https://doi.org/10.1177/2280800018764761

    Article  CAS  PubMed  Google Scholar 

  48. Kotmakçı M, Öztürk İ, Kantarcı G, Ermertcan Ş (2015) Characterization and antimicrobial activity of novel hazelnut oil microemulsion loaded with Mitomycin C. Lat Am J Pharm 34:529–536

    Google Scholar 

  49. Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J (2014) Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. EUCAST Defin Doc EDef 9:1–23

    Google Scholar 

  50. Zhou Z, Deng Y, Zhang P, Kou D, Zhou W, Meng Y, Yuan S, Wu S (2019) Cu2ZnSnS4 quantum dots as hole transport material for enhanced charge extraction and stability in all-inorganic CsPbBr3 perovskite solar cells. Sol Rrl 3:1800354

    Article  Google Scholar 

  51. Arora L, Singh VN, Partheepan G, Senguttuvan TD, Jain K (2017) One-step synthesis of size-controlled CZTS quantum dots. Appl Nanosci 7:499. https://doi.org/10.1007/s13204-015-0404-z

    Article  CAS  Google Scholar 

  52. Sharma SDBK, Stoesser A, Mondal SK, Garlapati SK, Faway MH, Chakravadhanula VSK, Kruk R, Hahn H (2018) Ac ce d M pt. ACS Appl Mater Interfaces 10:22408–22418

    Article  CAS  PubMed  Google Scholar 

  53. Das S, Sa K, Alam I, Mahanandia P (2019) Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application. J Mater Sci 54:8542–8555. https://doi.org/10.1007/s10853-019-03467-y

    Article  CAS  Google Scholar 

  54. Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131:12054–12055

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Sun Z, Shao C, Boye DM, Zhao J (2011) A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method. Nanotechnology 22:245605

    Article  PubMed  Google Scholar 

  56. Rakitin VV, Varushkin PE, Xin H, Novikov GF (2019) The use of liquid-phase method from DMSO solutions for synthesis of CZTS thin film materials. EPJ Photovoltaics 10:6–10. https://doi.org/10.1051/epjpv/2019007

    Article  CAS  Google Scholar 

  57. Ghediya PR, Chaudhuri TK (2015) Dark and photo-conductivity of doctor-bladed CZTS films above room temperature. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/48/45/455109

    Article  Google Scholar 

  58. Shagholani H, Ghoreishi SM, Mousazadeh M (2015) Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol 78:130–136. https://doi.org/10.1016/j.ijbiomac.2015.02.042

    Article  CAS  PubMed  Google Scholar 

  59. Shams M, Karimi M, Heydari M, Salimi A (2020) Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): the effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow me. Mater Sci Eng C 117:111271. https://doi.org/10.1016/j.msec.2020.111271

    Article  CAS  Google Scholar 

  60. Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A (2020) Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: fabrication, characterization, and in vitro studies. Polym Adv Technol 31:3302–3315. https://doi.org/10.1002/pat.5054

    Article  CAS  Google Scholar 

  61. Eskandarinia A, Kefayat A, Agheb M, Rafienia M, AminiBaghbadorani M, Navid S, Ebrahimpour K, Khodabakhshi D, Ghahremani F (2020) A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci. Rep. 10:1–15. https://doi.org/10.1038/s41598-020-59931-2

    Article  CAS  Google Scholar 

  62. Kumar A, Behl T, Chadha S (2020) Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 149:1262–1274. https://doi.org/10.1016/j.ijbiomac.2020.02.048

    Article  CAS  PubMed  Google Scholar 

  63. Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2021) Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids Surf A Physicochem Eng Asp 609:125577

    Article  CAS  Google Scholar 

  64. Sarheed O, Ahmed A, Shouqair D, Boateng J (2016) Antimicrobial dressings for ımproving wound healing. Wound Heal New Insights Anc Chall. https://doi.org/10.5772/63961

    Article  Google Scholar 

  65. Stuermer EK, Plattfaut I, Dietrich M, Brill F, Kampe A, Wiencke V, Ulatowski A, Geffken M, Rembe JD, Naumova EA, Debus SE, Smeets R (2021) In vitro activity of antimicrobial wound dressings on P. aeruginosa wound biofilm. Front Microbiol 12:1153. https://doi.org/10.3389/FMICB.2021.664030/BIBTEX

    Article  Google Scholar 

  66. Ammons MCB (2010) Anti-biofilm strategies and the need for innovations in wound care. Recent Pat Antiinfect Drug Discov 5:10. https://doi.org/10.2174/157489110790112581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duman AN, Colak SG, Alas MO, Er O, Tuncel A, Ozturk I, Yurt F, Genc R, Ocakoglu K (2021) Enhanced bacterial uptake of 131I -labeled antimicrobial imidazolium bromide salts using fluorescent carbon nanodots. Mater Today Commun 26:102167. https://doi.org/10.1016/j.mtcomm.2021.102167

    Article  CAS  Google Scholar 

  68. Baig ABA, Rathinam V, Palaninathan J (2020) Photodegradation activity of yttrium-doped SnO2 nanoparticles against methylene blue dye and antibacterial effects. Appl Water Sci 10:1–13

    Google Scholar 

  69. Kumar RS, Maddirevula S, Easwaran M, Dananjaya SHS, Kim MD (2015) Antibacterial activity of novel Cu2ZnSnS4 nanoparticles against pathogenic strains. RSC Adv 5:106400–106405. https://doi.org/10.1039/C5RA15027B

    Article  CAS  Google Scholar 

  70. Wang J, Zhao L, Zhang A, Huang Y, Tavakoli J, Tang Y (2018) Novel bacterial cellulose/gelatin hydrogels as 3D scaffolds for tumor cell culture. Polymers (Basel). https://doi.org/10.3390/polym10060581

    Article  PubMed  PubMed Central  Google Scholar 

  71. Leung M, Kievit FM, Florczyk SJ, Veiseh O, Wu J, Park JO, Zhang M (2010) Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm Res 27:1939–1948. https://doi.org/10.1007/s11095-010-0198-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  CAS  PubMed  Google Scholar 

  73. Öfkeli F, Demir D, Bölgen N (2020) Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.50337

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Tarsus University Scientific Research Projects Coordination Department (Project no: MF.22.003) for the supports.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. QDs NPs and solvent casted composite film preparation, data collection and characterization analysis of samples were performed by SC, DD, RK and KO. Antimicrobial activity analysis and data collection were performed by İÖ, FY and DÖ performed the cytotoxicity studies and data collection. The first draft of the manuscript was written by SC, RK, DD, KO, FY, DÖ and İÖ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Seda Ceylan or Kasim Ocakoglu.

Ethics declarations

Conflict of interest

The authors confirm that no conflict of interest occurred in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, S., Küçükosman, R., Yurt, F. et al. Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots. Polym. Bull. 80, 11273–11293 (2023). https://doi.org/10.1007/s00289-022-04615-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04615-2

Keywords

Navigation