Skip to main content
Log in

Blending HDPE with biodegradable polymers using modified natural rubber as a compatibilizing agent: mechanical, physical, chemical, thermal and morphological properties

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ternary polymer blends of poly (lactic acid), poly(butylene adipate-co-terephthalate), and modified natural rubber (ENR) (PLA/PBAT/ENR) were prepared in a ratio of 80/10/10 (denoted as P811) via reactive extrusion process. HDPE was then blended with P811 at various ratios of 80/20, 90/10 and 95/5 percent by weight. The mechanical, chemical, morphological, and water contact angle properties were investigated in this study. The mechanical properties of HDPE/P811 blends tend to decrease with increasing P811 content up to 20 wt% due to incompatibility between HDPE and P881. However, HDPE/P811 shows good performance in tensile strength but other performance declines, such as an elongation at break and Young’s modulus including impact strength. Therefore, this study finds that the optimum ratio of HDPE/P811 blending is 90/10. The water contact angle measurement reveals the wetting property of the blends compared to neat polymer. The thermal properties of HDPE/P811 indicate that the melting temperature (Tm) shifts to a higher degree compared to neat HDPE, while the crystallinity percent of polymer blends tend to decrease with higher P881 content. Scanning electron microscope (SEM) images and infrared spectrum show well-dispersed particles and incompatibility in the chemical interactions between HDPE and P811, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ et al (2014) Plastic pollution in the World’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9(12):e111913. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu J, Wang C (2020) Biodegradable plastics: Green hope or greenwashing? Marine Pollut Bull 161:111774. https://doi.org/10.1016/j.marpolbul.2020.111774

    Article  CAS  Google Scholar 

  3. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49(10):2839–2858. https://doi.org/10.1016/j.eurpolymj.2013.07.025

    Article  CAS  Google Scholar 

  4. Wang Y-L, Xiao Hu, Hai Li, XuZhong-Ming JiLi (2010) Polyamide-6/Poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer. Polym-Plast Technol Eng 49(12):1241–1246. https://doi.org/10.1080/03602559.2010.496418

    Article  CAS  Google Scholar 

  5. Lewitus D, McCarthy S, Ophir A et al (2006) The effect of nanoclays on the properties of PLLA-modified polymers Part 1: mechanical and thermal properties. J Polym Environ 14:171–177. https://doi.org/10.1007/s10924-006-0007-6

    Article  CAS  Google Scholar 

  6. Willett JL (1994) Mechanical properties of LDPE/granular starch composites. J Appl Polym Sci 54:1685–1695. https://doi.org/10.1002/app.1994.070541112

    Article  CAS  Google Scholar 

  7. Abbott AP, Abolibda TZ, Wanwan Q, Wise WR, Luka A (2017) Wright Thermoplastic starch–polyethylene blends homogenised using deep eutectic solvents. RSC Adv. 7:7268

    Article  CAS  Google Scholar 

  8. Beg MDH, Kormin S, Bijarimi M, Zaman HU (2016) Preparation and characterization of low-density polyethylene/thermoplastic starch composite. Adv Polym Technol. https://doi.org/10.1002/adv.21521

    Article  Google Scholar 

  9. Sapkota J, Natterodt JC, Shirole A, Foster EJ, Weder C (2017) Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol. Mater. Eng. 302(1):1600300. https://doi.org/10.1002/mame.201600300

    Article  CAS  Google Scholar 

  10. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, Nishida H (2020) Well-dispersed cellulose nanofiber in low density polyethylene nanocomposite by liquid-assisted extrusion. Polymers 12:927. https://doi.org/10.3390/polym12040927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aht-Ong D, Atong D, Pechyen C (2011) Surface and mechanical properties of cellulose micro-fiber reinforced recycle polyethylene film. Mater Sci Forum 695:469–472. https://doi.org/10.4028/www.scientific.net/msf.695.469

    Article  CAS  Google Scholar 

  12. Bengtsson M, Gatenholm P, Oksman K (2005) The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Sci Technol 65:1468–1479. https://doi.org/10.1016/j.compscitech.2004.12.050

    Article  CAS  Google Scholar 

  13. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019

    Article  CAS  Google Scholar 

  14. Rosa D, Guedes C, Carvalho C (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. https://doi.org/10.1007/s10853-006-1049-9

    Article  CAS  Google Scholar 

  15. Utracki LA, Shi GZH (2003) Compounding Polymer Blends. In: Utracki, LA. (eds) Polymer Blends Handbook. Dordrecht: Springer https://doi.org/10.1007/0-306-48244-4_9

  16. Wang B, Jin Y, Yang N, Weng Y, Huang Z, Men S (2020) Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking. e-Polymers 20(39):54

    CAS  Google Scholar 

  17. Kaseem M, Rehman ZUr, Hossain S, Singh AK, Dikici B (2021) A review on synthesis, properties, and applications of polylactic Acid/Silica composites. Polymers 13:3036. https://doi.org/10.3390/polym13183036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shameli K, Ahmad MB, Zin WMd, Yunus W, Ibrahim NA, Rahman RA, Darroudi MJM (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579. https://doi.org/10.2147/IJN.S12007

    Article  CAS  Google Scholar 

  19. Tenn N, Follain N, Soulestin J, Crétois R, Bourbigot S, Stéphane (2013) Marais effect of nanoclay hydration on barrier properties of PLA/montmorillonite based nanocomposites. J Phys Chem C 117(23):12117–12135. https://doi.org/10.1021/jp401546t

    Article  CAS  Google Scholar 

  20. Yang Y, Zhang M, Zixin J, Tam PY, Hua T, Younas MW, Kamrul H, Hong H (2020) Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications. Textile Res J. https://doi.org/10.1177/0040517520984101

    Article  Google Scholar 

  21. Sanivada UK, Mármol G, Brito FP, Fangueiro R (2020) PLA composites reinforced with flax and jute fibers—a review of recent trends. Process Paramet Mech Properties. Polym 12:2373. https://doi.org/10.3390/polym12102373

    Article  CAS  Google Scholar 

  22. Li H, Liu B, Ge L, Chen Y, Zheng H, Fang D (2021) Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum. Compos Part B: Eng. https://doi.org/10.1016/j.compositesb.2021.109277

    Article  Google Scholar 

  23. Hamada K, Kaseem M, Deri F, Ko YG (2016) Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend. Mater Lett 164:409–412

    Article  Google Scholar 

  24. Ma X, Yu J, Wang N (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci B Polym Phys 44:94–101. https://doi.org/10.1002/polb.20669

    Article  CAS  Google Scholar 

  25. Jun CL (2000) Reactive blending of biodegradable polymers: PLA and starch. J Polym Environ 8:33–37. https://doi.org/10.1023/A:1010172112118

    Article  Google Scholar 

  26. Mo XZ, Wei FX, Tan DF et al (2020) The compatibilization of PLA-g-TPU graft copolymer on polylactide/thermoplastic polyurethane blends. J Polym Res 27:33. https://doi.org/10.1007/s10965-019-1999-7

    Article  CAS  Google Scholar 

  27. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers (Basel). 11(7):1193. https://doi.org/10.3390/polym11071193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang H-R, Jia G, Hao W, Ye C, Yuan K, Liu S, Zhou L, Huan X, Gao L, Cui J, Fang S (2022) Design of fully biodegradable super-toughened PLA/PBAT blends with asymmetric composition via reactive compatibilization and controlling morphology. Mater Lett. https://doi.org/10.1016/j.matlet.2022.133067

    Article  Google Scholar 

  29. Hajba S, Tábi T (2017) Poly(Lactic Acid)/natural rubber blends. Mater Sci Forum 885:298–302. https://doi.org/10.4028/www.scientific.net/MSF.885.298

    Article  Google Scholar 

  30. Sathornluck S, Choochottiros C (2019) Modification of epoxidized natural rubber as a PLA toughening agent. J Appl Polym Sci 136:48267. https://doi.org/10.1002/app.48267

    Article  CAS  Google Scholar 

  31. Alias NF, Ismail H (2019) An overview of toughening polylactic acid by an elastomer. Polym-Plastics Technol Mater 58(13):1399–1422

    Article  CAS  Google Scholar 

  32. Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr Polym 74:79–85. https://doi.org/10.1016/j.carbpol.2008.01.017

    Article  CAS  Google Scholar 

  33. Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K (2013) Preparation and characterization of poly(lactic acid)/poly(butylene adipate-co-terepthalate) blends and their composite. Polym. Plast. Technol. Eng. 52:1362–1367. https://doi.org/10.1080/03602559.2013.820746

    Article  CAS  Google Scholar 

  34. Supawan S, Chantiga C (2019) Modification of epoxidized natural rubber as a PLA toughening agent. J of Appl polym Sci 136:48267. https://doi.org/10.1002/app.48267

    Article  CAS  Google Scholar 

  35. Pivsa-Art S, Kord-Sa-Ard J, Pivsa-Art W, Wongpajan R, Narongchai O, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia 89:353–360

    Article  CAS  Google Scholar 

  36. Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/Poly(lactic acid) for medical packaging application: physicochemical. Therm, Mech Barrier Properties, Energy Procedia 56:201–210

    CAS  Google Scholar 

  37. Sam ST, Hani N, Ismail H, Noriman N, Ragunathan S (2014) Investigation of epoxidized natural rubber (ENR 50) as a compatibilizer on cogon grass filled low density polyethylene/soya spent flour. MSF 803:310–316. https://doi.org/10.4028/www.scientific.net/msf.803.310

    Article  Google Scholar 

  38. Zormy NCP, Jaime DBS, Pedro OG, Marcos ASG, José JBJ, Alfonso BC, Silvia BB, Liliana BHC (2020) Preparation and characterization of bio-based PLA/PBAT and cinnamon essential oil polymer fibers and life-cycle assessment from hydrolytic degradation. Polymers 12:38. https://doi.org/10.3390/polym12010038

    Article  CAS  Google Scholar 

  39. Zhuang YX, Hansen O (2009) Correlation of effective dispersive and polar surface energies in heterogeneous self-assembled monolayer coatings. Langmuir 25:5437–5441. https://doi.org/10.1021/la804318p

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Shi J, Han L, Xiang F (2009) Crystallization and mechanical properties of TZnOw/HDPE composites. Mater Sci Eng A 501:220–228. https://doi.org/10.1016/j.msea.2008.09.061

    Article  CAS  Google Scholar 

  41. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897. https://doi.org/10.1016/j.egypro.2013.06.826

    Article  CAS  Google Scholar 

  42. Mat UW, Azman H, Akos NI, Nurhayati AZ, Kayathre K (2015) Mechanical, thermal and chemical resistance of epoxidized natural rubber toughened polylactic acid blends. Sains Malays.44:11:1615–1623. https://www.ukm.my/jsm/pdf_files/SM-PDF-44-11-2015/11%20Mat%20Uzir.pdf

  43. Poh BT, Lee KS (1994) FTIR study of thermal oxidation of ENR. Polym J 1:17–23

    Google Scholar 

  44. Jenjira K, Varaporn T (2020) The effect of epoxide content on compatibility of poly(lactic acid)/epoxidized natural rubber blends. J Appl Polym Sci 137:48996. https://doi.org/10.1002/app.48996

    Article  CAS  Google Scholar 

  45. Ekwipoo K, Donlaporn K, Ponusa S, Thummanoon P, Jobish J, Yeampon N, Ladawan S (2020) Influence of modified natural rubbers as compatibilizers on the properties of flexible food contact materials based on NR/PBAT blends. Mater and Des 196:109134. https://doi.org/10.1016/j.matdes.2020.109134

    Article  CAS  Google Scholar 

  46. Skulrat P, Suwaluk W, Chattrapa T, Charoen N (2016) Novel ternary blends of natural rubber/linear low-density polyethylene/thermoplastic starch: influence of epoxide level of epoxidized natural rubber on blend properties. Iran Polym J 25:711–723. https://doi.org/10.1007/s13726-016-0459-z

    Article  CAS  Google Scholar 

  47. Ismail H, Ooi ZX (2010) The effect of epoxidized natural rubber (ENR-50) as a compatibilizer on properties of high-density polyethylene/soya powder blends. Polym Plast Technol Eng 49:688–693. https://doi.org/10.1080/03602551003682059

    Article  CAS  Google Scholar 

  48. Johannes KF (2018) Chapter 18 Grafting. Reactive polymers fundamentals and applications - a concise guide to industrial polymers, 3rd edn. Elsevier, Boston, pp 563–600

    Google Scholar 

  49. Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresne A (2017) Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5:1906–1916. https://doi.org/10.1021/acssuschemeng.6b02633

    Article  CAS  Google Scholar 

  50. Siddharth SY, Basant SS, Priya R, Rajiv J, Ayush G (2020) Surface tension measurement of normal human blood samples by pendant drop method. J Med Eng 44:227–236. https://doi.org/10.1080/03091902.2020.1770348

    Article  Google Scholar 

  51. Natacha B, Raquel V, Philippe C, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831. https://doi.org/10.1016/j.matchemphys.2011.05.016

    Article  CAS  Google Scholar 

  52. Suksut B, Deeprasertkul C (2011) Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296. https://doi.org/10.1007/s10924-010-0278-9

    Article  CAS  Google Scholar 

  53. Eduardo HB, Laís NP, Lidiane CC, Fabio RP, Luiz AP (2019) Analysis of the degradation during melt processing of PLA/Biosilicate® Composites. J Compos Sci 3:52. https://doi.org/10.3390/jcs3020052

    Article  CAS  Google Scholar 

  54. Shen S, Mona D, Rodion K (2020) Uncompatibilized PBAT/PLA blends: manufacturability, miscibility and properties. Materials 13:4897. https://doi.org/10.3390/ma13214897

    Article  CAS  Google Scholar 

  55. Anna M, Marian Z (2014) ENR/PCL polymer biocomposites from renewable resources. Chimie 17:944–951. https://doi.org/10.1016/j.crci.2013.10.008

    Article  CAS  Google Scholar 

  56. Mohd B, Sahrim A, Rozaidi R (2014) Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends. J Elastomers Plast 46:338–354

    Article  Google Scholar 

  57. Benjamin M, Sebastien P, Luanda CL, Sebastien L, JFG, Jannick DR (2016) Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv 6:96421–96430. https://doi.org/10.1039/C6RA18492H

    Article  Google Scholar 

  58. Chunmei Z, Weiwei W, Yun H, Yonghao P, Long J, Yi D, Yongyue L, Zheng P (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater and Des 45:198–205. https://doi.org/10.1016/j.matdes.2012.09.024

    Article  CAS  Google Scholar 

  59. Di Maio L, Garofalo E, Scarfato P, Incarnato L (2015) Effect of polymer/organoclay composition on morphology and rheological properties of polylactide nanocomposites. Polym Compos 36:1135. https://doi.org/10.1002/pc.23424

    Article  CAS  Google Scholar 

  60. Jeannine B, Renan BP, Rodrigo VL, Ana MQBB, Paulo JAS (2020) Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: respirometric and physical-chemical analysis. Int J Biol Macromol 164:1399–1412. https://doi.org/10.1016/j.ijbiomac.2020.07.309

    Article  CAS  Google Scholar 

  61. Rosniza H, Mohamad AB, Omar SD, Nik NZ, Saad SD (2016) A structural study of epoxidized natural rubber (ENR-50) ring opening under mild acidic condition. J Appl Polym Sci 133:44123. https://doi.org/10.1002/app.44123

    Article  CAS  Google Scholar 

  62. Michael RS, Amar KM, Manjusri M (2018) Effect of compatibilization on biobased rubber-toughened poly(trimethylene terephthalate): miscibility, morphology, and mechanical properties. ACS Omega 3:7300–7309. https://doi.org/10.1021/acsomega.8b00490

    Article  CAS  Google Scholar 

  63. Mahsa N, Azam JA, Hamid M (2019) High-performance bio-based poly(lactic acid)/natural rubber/epoxidized natural rubber blends: effect of epoxidized natural rubber on microstructure, toughness and static and dynamic mechanical properties. Polym Int 3:439–446. https://doi.org/10.1002/pi.5727

    Article  CAS  Google Scholar 

  64. Parthasarathi V, Sundaresan B, Dhanalakshmi V, Anbarasan R (2010) Functionalization of HDPE with aminoester and hydroxyester by thermolysis method—An FTIR-RI approach. Thermochim Acta 510:61–67. https://doi.org/10.1016/j.tca.2010.06.023

    Article  CAS  Google Scholar 

  65. Kunyu Z, Manjusri M, Amar KM (2014) Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustain Chem Eng 2:2345–2354. https://doi.org/10.1021/sc500353v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanon Wiphanurat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiphanurat, C., Hanthanon, P., Ouipanich, S. et al. Blending HDPE with biodegradable polymers using modified natural rubber as a compatibilizing agent: mechanical, physical, chemical, thermal and morphological properties. Polym. Bull. 80, 11421–11437 (2023). https://doi.org/10.1007/s00289-022-04595-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04595-3

Keywords

Navigation