Skip to main content

Advertisement

Log in

Hydrogels and biohydrogels: investigation of origin of production, production methods, and application

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogels, called “crosslinked 3D networks,” are excellent biomaterials for various food, agriculture, pharmaceutical, biomedical and environmental applications owing to their hygroscopic nature, porous structure, stimuli-responsive, viscoelasticity, flexibility, versatility, absorbent property, and soft structure. Hydrogels based on biopolymers (polysaccharides/proteins) like chitosan, alginate, pectin, starch, collagen, gelatin, whey protein, soy, heteropolymer granules, etc., which are crosslinked physically or chemically, are typically preferable to synthetics due to their compatibility, sustainability, degradability, nontoxic, and non-immunogenic features. As a result, these characteristics make hydrogels ideal for various applications, such as packaging, bioactives encapsulation, functional foods, food preservation, pharmaceuticals, drug and cell delivery, preventing bleeding, and tissue regenerative. Hydrogels can also control and manipulate material characteristics by the response to external factors including light, pH, magnetic, temperature, enzyme, temperature, electricity, etc. Moreover, hydrogels show important physicochemical reactions when exposed to environmental stimuli reversibly; as a result, after the removal of stimuli, the hydrogels are able of return to their primary state. Nevertheless, in this study, the types of hydrogel beads, production methods, their properties and applications in the food, biomedicine, and pharmaceutical sciences have been reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Augustine R, Alhussain H, Zahid AA, Raza Ur Rehman S, Ahmed R, A. Hasan (2021) Crosslinking Strategies to Develop Hydrogels for Biomedical Applications In: Nano Hydrogels, Springer, p 21–57

  2. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A (2020) Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small 16(35):2002931

    Article  CAS  Google Scholar 

  3. Hu W, Wang Z, Xiao Y, Zhang S, Wang J (2019) Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 7(3):843–855

    Article  CAS  PubMed  Google Scholar 

  4. Liu S, Zhang H, Ahlfeld T, Kilian D, Liu Y, Gelinsky M, Hu Q (2022) Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Bio-Design Manuf. https://doi.org/10.1007/s42242-022-00194-3

    Article  Google Scholar 

  5. Zhang H, Wu X, Qin Z, Sun X, Zhang H, Yu Q, Yao M, He S, Dong X, Yao F (2020) Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose 27(17):9975–9989

    Article  CAS  Google Scholar 

  6. Voorhaar L, Hoogenboom R (2016) Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev 45(14):4013–4031

    Article  CAS  PubMed  Google Scholar 

  7. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F (2019) Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 30(10):1–10

    Article  CAS  Google Scholar 

  8. Ahmad S, Ahmad M, Manzoor K, Purwar R, Ikram S (2019) A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 136:870–890

    Article  CAS  PubMed  Google Scholar 

  9. Parhi R (2017) Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm bull 7(4):515–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54

    Article  CAS  PubMed  Google Scholar 

  11. Capanema NS, Mansur AA, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS (2018) Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol 106:1218–1234

    Article  CAS  PubMed  Google Scholar 

  12. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  CAS  PubMed  Google Scholar 

  13. Mathew AP, Uthaman S, Cho K-H, Cho C-S, Park I-K (2018) Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol 110:17–29

    Article  CAS  PubMed  Google Scholar 

  14. Wang K, Han Z (2017) Injectable hydrogels for ophthalmic applications. J Control Release 268:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS (2022) Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol macromol 202:558–596

    Article  CAS  PubMed  Google Scholar 

  16. da Silva RL, Bernardinelli OD, Frachini EC, Ulrich H, Sabadini E, Petri DF (2022) Vanillin crosslinked chitosan films: the states of water and the effect of carriers on curcumin uptake. Carbohyd Polym 292:119725

    Article  Google Scholar 

  17. Zhou HY, Tong JN, Ren LJ, Hao PY, Zheng HJ, Guo XM, Chen YW, Li JB, Park HJ (2022) Preparation and performance of chitosan/cyclodextrin-g-glutamic acid thermosensitive hydrogel. J Drug Deliv Sci Technol 74:103504

    Article  CAS  Google Scholar 

  18. Sekine Y, Nankawa T, Yunoki S, Sugita T, Nakagawa H, Yamada T (2020) Eco-friendly carboxymethyl cellulose nanofiber hydrogels prepared via freeze cross-linking and their applications. ACS Applied Polymer Materials 2(12):5482–5491

    Article  CAS  Google Scholar 

  19. Lu P, Yang Y, Liu R, Liu X, Ma J, Wu M, Wang S (2020) Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohyd Polym 249:116831

    Article  CAS  Google Scholar 

  20. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydroge: a review. Saudi Pharmaceutical Journal 24(5):554–559

    Article  PubMed  Google Scholar 

  21. Lyu S, Fang J, Duan T, Fu L, Liu J, Li H (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun 53(100):13375–13378

    Article  CAS  Google Scholar 

  22. Monteiro N, Thrivikraman G, Athirasala A, Tahayeri A, França CM, Ferracane JL, Bertassoni LE (2018) Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dent Mater 34(3):389–399

    Article  CAS  PubMed  Google Scholar 

  23. Grijalvo S, Eritja R, Díaz Díaz D (2019) On the race for more stretchable and tough hydrogels. Gels 5(2):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurnia JC, Birgersson E, Mujumdar AS (2012) Analysis of a model for pH-sensitive hydrogels. Polymer 53(2):613–622

    Article  CAS  Google Scholar 

  25. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848

    Article  CAS  PubMed  Google Scholar 

  26. Guaresti O, García-Astrain C, Aguirresarobe R, Eceiza A, Gabilondo N (2018) Synthesis of stimuli–responsive chitosan–based hydrogels by Diels-Alder cross–linkingclick reaction as potential carriers for drug administration. Carbohyd Polym 183:278–286

    Article  CAS  Google Scholar 

  27. Li H, Song X, Li B, Kang J, Liang C, Wang H, Yu Z, Qiao Z (2017) Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Mater Sci Eng, C 77:1078–1087

    Article  CAS  Google Scholar 

  28. Echalier C, Valot L, Martinez J, Mehdi A, Subra G (2019) Chemical cross-linking methods for cell encapsulation in hydrogels. Mater Today Commun 20:100536

    Article  CAS  Google Scholar 

  29. Bai R, Yang Q, Tang J, Morelle XP, Vlassak J, Suo Z (2017) Fatigue fracture of tough hydrogels. Extreme Mech Lett 15:91–96

    Article  Google Scholar 

  30. Shaghaleh H, Hamoud YA, Xu X, Liu H, Wang S, Sheteiwy M, Dong F, Guo L, Qian Y, Li P (2021) Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging. Int J Biol Macromol 183:1911–1924

    Article  CAS  PubMed  Google Scholar 

  31. Dai H, Zhang H, Ma L, Zhou H, Yu Y, Guo T, Zhang Y, Huang H (2019) Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: Synthesis, characterization and naringin prolonged release. Carbohyd Polym 209:51–61

    Article  CAS  Google Scholar 

  32. Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, Li J, Li Z, Liu W (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohyd Polym 277:118871

    Article  CAS  Google Scholar 

  33. Ye B, Zhang S, Li R, Li L, Lu L, Zhou C (2018) An in-situ formable and fibrils-reinforced polysaccharide composite hydrogel by self-crosslinking with dual healing ability. Compos Sci Technol 156:238–246

    Article  CAS  Google Scholar 

  34. Sivak WN, Pollack IF, Petoud S, Zamboni WC, Zhang J, Beckman EJ (2008) Catalyst-dependent drug loading of LDI–glycerol polyurethane foams leads to differing controlled release profiles. Acta Biomater 4(5):1263–1274

    Article  CAS  PubMed  Google Scholar 

  35. Baek J, Fan Y, Jeong S-H, Lee H-Y, Jung H-D, Kim H-E, Kim S, Jang T-S (2018) Facile strategy involving low-temperature chemical cross-linking to enhance the physical and biological properties of hyaluronic acid hydrogel. Carbohyd Polym 202:545–553

    Article  CAS  Google Scholar 

  36. Hu L, Zhang P, Wang X, Cheng X, Qin J, Tang R (2017) pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications. Carbohyd Polym 178:166–179

    Article  CAS  Google Scholar 

  37. Barba BJD, Tranquilan-Aranilla C, Abad LV (2016) Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation. Radiat Phys Chem 118:111–113

    Article  CAS  Google Scholar 

  38. Thelen JL, Inceoglu S, Venkatesan NR, Mackay NG, Balsara NP (2016) Relationship between ion dissociation, melt morphology, and electrochemical performance of lithium and magnesium single-ion conducting block copolymers. Macromolecules 49(23):9139–9147

    Article  CAS  Google Scholar 

  39. Sun SJ, Deng P, Peng CE, Ji HY, Mao LF, Peng LZ (2022) Extraction, structure and immunoregulatory activity of low molecular weight polysaccharide from dendrobium officinale. Polymers 14(14):2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  PubMed  Google Scholar 

  41. Gyles DA, Castro LD, Silva JOC Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polymer J 88:373–392

    Article  CAS  Google Scholar 

  42. Nur M, Vasiljevic T (2017) Can natural polymers assist in delivering insulin orally? Int J Biol Macromol 103:889–901

    Article  CAS  PubMed  Google Scholar 

  43. Xue J, Wu Y, Shi K, Xiao X, Gao Y, Li L, Qiao Y (2019) Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment. Biores Technol 280:88–94

    Article  CAS  Google Scholar 

  44. Ottman N, Ruokolainen L, Suomalainen A, Sinkko H, Karisola P, Lehtimäki J, Lehto M, Hanski I, Alenius H, Fyhrquist N (2019) Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J allergy clin immunol 143(3):1198-1206.e12

    Article  CAS  PubMed  Google Scholar 

  45. Nasrullah A, Bhat A, Naeem A, Isa MH, Danish M (2018) High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol 107:1792–1799

    Article  CAS  PubMed  Google Scholar 

  46. Swamy BY, Yun Y-S (2015) In vitro release of metformin from iron (III) cross-linked alginate–carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119

    Article  CAS  PubMed  Google Scholar 

  47. Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Eldin MSM (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8(1):38–47

    Article  CAS  Google Scholar 

  48. Vasile C, Pamfil D, Stoleru E, Baican M (2020) New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 25(7):1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z (2019) Applications of hydrogels with special physical properties in biomedicine. Polymers 11(9):1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kekes T, Tzia C (2020) Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. J Environ Manage 262:110372

    Article  CAS  PubMed  Google Scholar 

  51. Shtenberg Y, Goldfeder M, Prinz H, Shainsky J, Ghantous Y, El-Naaj IA, Schroeder A, Bianco-Peled H (2019) Mucoadhesive hybrid polymer/liposome pastes based on modified polysaccharides. J Pharm Sci 108(12):3814–3822

    Article  CAS  PubMed  Google Scholar 

  52. Mohammadi B, Pirsa S, Alizadeh M (2019) Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polym Polym Compos 27(8):507–517

    CAS  Google Scholar 

  53. Pirsa S, Farshchi E, Roufegarinejad L (2020) Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. J Polym Environ 28(12):3154–3163

    Article  CAS  Google Scholar 

  54. Farhadnejad H, Mortazavi SA, Erfan M, Darbasizadeh B, Motasadizadeh H, Fatahi Y (2018) Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release. Int J Biol Macromol 111:696–705

    Article  CAS  PubMed  Google Scholar 

  55. Priyadarshi R, Kim S-M, Rhim J-W (2021) Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustain Mater Technol 29:e00325

    CAS  Google Scholar 

  56. Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843

    Article  CAS  PubMed  Google Scholar 

  57. Hossieni-Aghdam SJ, Foroughi-Nia B, Zare-Akbari Z, Mojarad-Jabali S, Farhadnejad H (2018) Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid. Int J Biol Macromol 107:2436–2449

    Article  CAS  PubMed  Google Scholar 

  58. da Silva FR, de Moura MR, Glenn GM, Aouada FA (2018) Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J Mol Liq 265:327–336

    Article  Google Scholar 

  59. Lowe B, Venkatesan J, Anil S, Shim MS, Kim S-K (2016) Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 93:1479–1487

    Article  CAS  PubMed  Google Scholar 

  60. Makhado E, Pandey S, Nomngongo PN, Ramontja J (2018) Preparation and characterization of xanthan gum-cl-poly (acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J Colloid Interface Sci 513:700–714

    Article  CAS  PubMed  Google Scholar 

  61. Makhado E, Pandey S, Ramontja J (2019) Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: an efficient adsorption of hexavalent chromium. Carbohyd Polym 222:114989

    Article  CAS  Google Scholar 

  62. Zhang H, Wang M, Chen L, Liu Y, Liu H, Huo H, Sun L, Ren X, Deng Y, Qi A (2017) Structure-solubility relationships and thermodynamic aspects of solubility of some flavonoids in the solvents modeling biological media. J Mol Liq 225:439–445

    Article  CAS  Google Scholar 

  63. Xu Y, Han J, Lin H (2017) Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohyd Polym 156:372–379

    Article  CAS  Google Scholar 

  64. Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43

    Article  CAS  PubMed  Google Scholar 

  65. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H (2016) Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 82:273–278

    Article  CAS  PubMed  Google Scholar 

  66. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M (2016) PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol 93:1317–1327

    Article  CAS  PubMed  Google Scholar 

  67. Maurya SK, Gopmandal PP, Ohshima H (2018) Electrophoresis of concentrated suspension of soft particles with volumetrically charged inner core. Colloid Polym Sci 296(4):721–732

    Article  CAS  Google Scholar 

  68. Marziano V, Pugliese A, Merler S, Ajelli M (2017) Detecting a surprisingly low transmission distance in the early phase of the 2009 influenza pandemic. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  69. Asadzadeh F, Pirsa S (2020) Specific removal of nitrite from Lake Urmia sediments by biohydrogel based on isolated soy protein/tragacanth/mesoporous silica nanoparticles/lycopene. Global Chall 4(12):2000061

    Article  Google Scholar 

  70. Garg S, Garg A, Vishwavidyalaya R (2016) Hydrogel: Classification, properties, preparation and technical features. Asian J Biomater Res 2(6):163–170

    Google Scholar 

  71. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim S, Sim SB, Lee K, Cha C (2017) Comprehensive examination of mechanical and diffusional effects on cell behavior using a decoupled 3D hydrogel system. Macromol Biosci 17(9):1700162

    Article  Google Scholar 

  73. Quan W-Y, Hu Z, Liu H-Z, Ouyang Q-Q, Zhang D-Y, Li S-D, Li P-W, Yang Z-M (2019) Mussel-inspired catechol-functionalized hydrogels and their medical applications. Molecules 24(14):2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jahanbakhsh A, Pirsa S, Bahram M (2017) Synthesis and characterization of magnetic nanocomposites based on Hydrogel-Fe 3O 4 and application to remove of organic dye from waste water. Main Group Chem 16(2):85–94

    Article  Google Scholar 

  75. Muñoz-Bonilla A, Zagora J, Plachá D, Echeverría C, Chiloeches A, Fernández-García M (2020) Chemical hydrogels bearing thiazolium groups with a broad spectrum of antimicrobial behavior. Polymers 12(12):2853

    Article  PubMed  PubMed Central  Google Scholar 

  76. Daly AC, Riley L, Segura T, Burdick JA (2020) Hydrogel microparticles for biomedical applications. Nat Rev Mater 5(1):20–43

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen TD, Nguyen TT, Ly KL, Tran AH, Nguyen TTN, Vo MT, Ho HM, Dang NTN, Vo VT, Nguyen DH (2019) In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications. Int J Polym Sci. https://doi.org/10.1155/2019/7382717

    Article  Google Scholar 

  78. Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H (2018) Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 25(1):278–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang D, Zhang M, Gu X (2018) Seaweed-derived hydrocolloids as food coating and encapsulation agents. Bioactive Seaweeds for Food Applications. Elsevier, pp 153–175

    Chapter  Google Scholar 

  80. Itkonen Freitas A-M, Mentula M, Rahkola-Soisalo P, Tulokas S, Mikkola TS (2020) Tension-free vaginal tape surgery versus polyacrylamide hydrogel injection for primary stress urinary incontinence: a randomized clinical trial. J urology 203(2):372–378

    Article  Google Scholar 

  81. Li M, Tu Q, Long X, Zhang Q, Jiang H, Chen C, Wang S, Min D (2021) Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor. Int J Biol Macromol 166:1526–1534

    Article  CAS  PubMed  Google Scholar 

  82. Wang T, Zhang F, Zhao R, Wang C, Hu K, Sun Y, Politis C, Shavandi A, Nie L (2020) Polyvinyl alcohol/sodium alginate hydrogels incorporated with silver nanoclusters via green tea extract for antibacterial applications. Des Monomers Polym 23(1):118–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen Y, Li J, Lu J, Ding M, Chen Y (2022) Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness. Polym Testing 108:107516

    Article  CAS  Google Scholar 

  84. Pereira I, Pereira JE, Maltez L, Rodrigues A, Rodrigues C, Oliveira M, Silva DM, Caseiro AR, Prada J, Maurício AC (2021) Regeneration of critical-sized defects, in a goat model, using a dextrin-based hydrogel associated with granular synthetic bone substitute. Regen Biomater 8(1):rbaa036

    Article  PubMed  Google Scholar 

  85. Tran M, Castro J, O’Brien KR, Pham C, Bird TH, Iovine PM (2020) Release kinetics and antimicrobial properties of iodinated species liberated from physically and chemically modified starch granules. Starch-Stärke 72(1–2):1900134

    Article  CAS  Google Scholar 

  86. Wang X, Yang Y, Liu C, Guo H, Chen Z, Xia J, Liao Y, Tang C-Y, Law W-C (2021) Photo-and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. Polymer 229:123961

    Article  CAS  Google Scholar 

  87. Bardajee GR, Sharifi M, Torkamani H, Vancaeyzeele C (2021) Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep and its application in the drug delivery of tetracyceline hydrochloride. Colloids Surf A 616:126350

    Article  CAS  Google Scholar 

  88. Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, Bani MS, Hajizadeh Z, Asgharnasl S (2019) A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int J Biol Macromol 140:407–414

    Article  CAS  PubMed  Google Scholar 

  89. Kurdtabar M, Nezam H, Rezanejade Bardajee G, Dezfulian M, Salimi H (2018) Biocompatible magnetic hydrogel nanocomposite based on carboxymethylcellulose: synthesis, cell culture property and drug delivery. Polym Sci Ser B 60(2):231–242

    Article  CAS  Google Scholar 

  90. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohyd Polym 198:385–400

    Article  CAS  Google Scholar 

  91. Kalkhoran AHZ, Vahidi O, Naghib SM (2018) A new mathematical approach to predict the actual drug release from hydrogels. Eur J Pharm Sci 111:303–310

    Article  Google Scholar 

  92. Rao Z, Ge H, Liu L, Zhu C, Min L, Liu M, Fan L, Li D (2018) Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol 107:1184–1192

    Article  CAS  PubMed  Google Scholar 

  93. Fathi F, Rashidi M-R, Pakchin PS, Ahmadi-Kandjani S, Nikniazi A (2021) Photonic crystal based biosensors: emerging inverse opals for biomarker detection. Talanta 221:121615

    Article  CAS  PubMed  Google Scholar 

  94. Cao Z, Wang D, Li Y, Xie W, Wang X, Tao L, Wei Y, Wang X, Zhao L (2018) Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Sci China Life Sci 61(4):448–456

    Article  CAS  PubMed  Google Scholar 

  95. Dsouza SD, Haq AU, Brunet P, Alessi B, McGlynn RJ, Maguire P, Svrcek V, Mariotti D (2020) Plasma induced non-equilibrium electrochemistry for synthesis of nitrogen doped carbon quantum dots applied to third-generation solar cells. In: ECS Meeting Abstracts. IOP Publishing

  96. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512

    Article  CAS  PubMed  Google Scholar 

  97. Liu S, Zhao N, Cheng Z, Liu H (2015) Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15):6836–6842

    Article  CAS  PubMed  Google Scholar 

  98. Chen N, Wang H, Ling C, Vermerris W, Wang B, Tong Z (2019) Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohyd Polym 225:115207

    Article  CAS  Google Scholar 

  99. Chen Y, Zheng K, Niu L, Zhang Y, Liu Y, Wang C, Chu F (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 128:414–420

    Article  CAS  PubMed  Google Scholar 

  100. Halperin-Sternfeld M, Ghosh M, Sevostianov R, Grigoriants I, Adler-Abramovich L (2017) Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chem Commun 53(69):9586–9589

    Article  CAS  Google Scholar 

  101. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    Article  CAS  PubMed  Google Scholar 

  102. Melo BC, Paulino FA, Cardoso VA, Pereira AG, Fajardo AR, Rodrigues FH (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohyd Polym 181:358–367

    Article  CAS  Google Scholar 

  103. Nie K, Han S, Yang J, Sun Q, Wang X, Li X, Li Q (2020) Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers 12(9):1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abdollahi R, Taghizadeh MT, Savani S (2018) Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym Degrad Stab 147:151–158

    Article  CAS  Google Scholar 

  105. Lugao AB, Malmonge SM (2001) Use of radiation in the production of hydrogels. Nucl Instrum Methods Phys Res, Sect B 185(1–4):37–42

    Article  CAS  Google Scholar 

  106. Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, Mola GT (2018) Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 16(1):113–146

    Article  CAS  Google Scholar 

  107. Kwiecień I, Kwiecień M (2018) Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels 4(2):47

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang H, Zhang F, Yuan R (2020) Applications of natural polymer-based hydrogels in the food industry. Hydrogels based on natural polymers. Elsevier, pp 357–410

    Chapter  Google Scholar 

  109. Zhang Z, Zhang R, Zou L, Chen L, Ahmed Y, Al Bishri W, Balamash K, McClements DJ (2016) Encapsulation of curcumin in polysaccharide-based hydrogel beads: impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids 58:160–170

    Article  CAS  Google Scholar 

  110. Batista RA, Espitia PJP, Quintans JdSS, Freitas MM, Cerqueira MÂ, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr polym 205:106–116

    Article  CAS  PubMed  Google Scholar 

  111. Ismail MY, Patanen M, Sirviö JA, Visanko M, Ohigashi T, Kosugi N, Huttula M, Liimatainen H (2019) Hybrid films of cellulose nanofibrils, chitosan and nanosilica—structural, thermal, optical, and mechanical properties. Carbohyd Polym 218:87–94

    Article  CAS  Google Scholar 

  112. Koupaei N, Taghe Delshad M, Ghasemi Amineh A (2019) Properties and applications of hydrogels in medicine: a review. Adv Mater New Coat 8(29):2116–2128

    Google Scholar 

  113. Kim MH, Park H, Nam HC, Park SR, Jung J-Y, Park WH (2018) Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohyd Polym 181:579–586

    Article  CAS  Google Scholar 

  114. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun Y, Nan D, Jin H, Qu X (2020) Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Testing 81:106283

    Article  CAS  Google Scholar 

  116. Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng, C 73:456–464

    Article  CAS  Google Scholar 

  117. Iqbal S, Javed M, Bahadur A, Qamar MA, Ahmad M, Shoaib M, Raheel M, Ahmad N, Akbar MB, Li H (2020) Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly (acrylic acid) microgel shell for efficient removal of methylene blue under visible light. J Mater Sci: Mater Electron 31(11):8423–8435

    CAS  Google Scholar 

  118. Dharmalingam K, Anandalakshmi R (2019) Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. Int J Biol Macromol 134:815–829

    Article  CAS  PubMed  Google Scholar 

  119. Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Choi SW, Kim J (2018) Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials 11(7):1125

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schafer J, Reindel W, Steffen R, Mosehauer G, Chinn J (2018) Use of a novel extended blink test to evaluate the performance of two polyvinylpyrrolidone-containing, silicone hydrogel contact lenses. Clinical Ophthalmology (Auckland, NZ) 12:819

    Article  CAS  Google Scholar 

  122. Orsborn G, Dumbleton K (2019) Eye care professionals’ perceptions of the benefits of daily disposable silicone hydrogel contact lenses. Cont Lens Anterior Eye 42(4):373–379

    Article  PubMed  Google Scholar 

  123. Chattopadhyay K, Xavier KM, Layana P, Balange AK, Nayak BB (2019) Chitosan hydrogel inclusion in fish mince based emulsion sausages: effect of gel interaction on functional and physicochemical qualities. Int J Biol Macromol 134:1063–1069

    Article  CAS  PubMed  Google Scholar 

  124. Eshkol-Yogev I, Gilboa E, Giladi S, Zilberman M (2021) Formulation-Properties effects of novel dual composite hydrogels for use as medical sealants. Eur Polymer J 152:110470

    Article  CAS  Google Scholar 

  125. Mao L, Miao S, Yuan F, Gao Y (2018) Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res Int 103:1–7

    Article  CAS  PubMed  Google Scholar 

  126. Cittadini A, Munekata PE, Pateiro M, Sarriés MV, Domínguez R, Lorenzo JM (2021) Physicochemical composition and nutritional properties of foal burgers enhanced with healthy oil emulsion hydrogels. Int J Food Sci Technol 56(12):6182–6191

    Article  CAS  Google Scholar 

  127. Domínguez R, Munekata PE, Pateiro M, López-Fernández O, Lorenzo JM (2021) Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr Opin Food Sci 37:135–144

    Article  Google Scholar 

  128. Gallegos Soto AS, Rabelo RS, Vélez-Erazo EM, de Souza Silveira PT, Efraim P, Hubinger MD (2020) Application of complex chitosan hydrogels added with canola oil in partial substitution of cocoa butter in dark chocolate. Front Sustain Food Syst 4:559510

    Article  Google Scholar 

  129. Cesco CT, Valente AJ, Paulino AT (2021) Methylene blue release from chitosan/pectin and chitosan/DNA blend hydrogels. Pharmaceutics 13(6):842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kumari PK, Sharmila M, Rao YS (2020) Super porous hydrogels: a review. J Pharm Res Int 32:153–165

    Article  Google Scholar 

  131. Gharibzahedi SMT, Smith B (2021) Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: a review. Compr Rev Food Sci Food Saf 20(2):1250–1279

    Article  CAS  PubMed  Google Scholar 

  132. Zandi M, Dardmeh N, Pirsa S, Almasi H (2017) Identification of cardamom encapsulated alginate–whey protein concentrates microcapsule release kinetics and mechanism during storage, stew process and oral consumption. J Food Process Eng 40(1):e12314

    Article  Google Scholar 

  133. Karimi Sani I, Alizadeh Khaledabad M, Pirsa S, Moghaddas Kia E (2020) Physico-chemical, organoleptic, antioxidative and release characteristics of flavoured yoghurt enriched with microencapsulated Melissa officinalis essential oil. Int J Dairy Technol 73(3):542–551

    Article  CAS  Google Scholar 

  134. Klein M, Poverenov E (2020) Natural biopolymer-based hydrogels for use in food and agriculture. J Sci Food Agric 100(6):2337–2347

    Article  CAS  PubMed  Google Scholar 

  135. Pirsa S, Hafezi K (2022) Hydrocolloids: structure, preparation method, and application in food industry. Food Chem 399:133967

    Article  PubMed  Google Scholar 

  136. Wijaya W, Patel AR, Setiowati AD, Van der Meeren P (2017) Functional colloids from proteins and polysaccharides for food applications. Trends Food Sci Technol 68:56–69

    Article  CAS  Google Scholar 

  137. Sharifi KA, Pirsa S (2021) Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: investigation of physicochemical and antimicrobial properties. Mater Chem Phys 267:124580

    Article  CAS  Google Scholar 

  138. Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR (2017) Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol 97:536–543

    Article  CAS  PubMed  Google Scholar 

  139. Liang L, Luo Y (2020) Casein and pectin: structures, interactions, and applications. Trends Food Sci Technol 97:391–403

    Article  Google Scholar 

  140. Zhang Z, Hao G, Liu C, Fu J, Hu D, Rong J, Yang X (2021) Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Res Int 147:110564

    Article  CAS  PubMed  Google Scholar 

  141. Asdagh A, Karimi Sani I, Pirsa S, Amiri S, Shariatifar N, Eghbaljoo-Gharehgheshlaghi H, Shabahang Z, Taniyan A (2021) Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ 29(1):335–349

    Article  CAS  Google Scholar 

  142. Chavoshizadeh S, Pirsa S, Mohtarami F (2020) Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packag Shelf Life 24:100501

    Article  Google Scholar 

  143. Gregorova A, Saha N, Kitano T, Saha P (2015) Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohyd Polym 117:559–568

    Article  CAS  Google Scholar 

  144. Qi X, Su T, Tong X, Xiong W, Zeng Q, Qian Y, Zhou Z, Wu X, Li Z, Shen L (2019) Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohyd Polym 224:115208

    Article  CAS  Google Scholar 

  145. Hosseini SN, Pirsa S, Farzi J (2021) Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym Testing 97:107182

    Article  CAS  Google Scholar 

  146. Pirsa S, Karimi Sani I, Pirouzifard MK, Erfani A (2020) Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A 37(4):634–648

    Article  CAS  Google Scholar 

  147. Sani IK, Geshlaghi SP, Pirsa S, Asdagh A (2021) Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 117:106719

    Article  CAS  Google Scholar 

  148. Fazeli M, Alizadeh M, Pirsa S (2022) Nanocomposite film based on gluten modified with heracleum persicum essence/MgO/polypyrrole: investigation of physicochemical and electrical properties. J Polym Environ 30(3):954–970

    Article  CAS  Google Scholar 

  149. Li W, Qamar SA, Qamar M, Basharat A, Bilal M, Iqbal HM (2021) Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int J Biol Macromol 190:700–712

    Article  CAS  PubMed  Google Scholar 

  150. Chavoshizadeh S, Pirsa S, Mohtarami F (2020) Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date. Eur J Lipid Sci Technol 122(3):1900385

    Article  CAS  Google Scholar 

  151. Ibrahim S, Nawwar GA, Sultan M (2016) Development of bio-based polymeric hydrogel: green, sustainable and low cost plant fertilizer packaging material. J Environ Chem Eng 4(1):203–210

    Article  CAS  Google Scholar 

  152. Pirsa S, Asadzadeh F, Karimi Sani I (2020) Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. J Inorg Organomet Polym Mater 30(8):3188–3198

    Article  CAS  Google Scholar 

  153. Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30(7):2654–2665

    Article  CAS  Google Scholar 

  154. Jabraili A, Pirsa S, Pirouzifard MK, Amiri S (2021) Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. J Polym Environ 29(8):2557–2571

    Article  CAS  Google Scholar 

  155. Bandyopadhyay S, Saha N, Brodnjak UV, Sáha P (2019) Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: characterized for packaging fresh berries. Food Packag Shelf Life 22:100402

    Article  Google Scholar 

  156. Yorghanlu RA, Hemmati H, Pirsa S (2021) Production of biodegradable sodium caseinate film containing titanium oxide nanoparticles and grape seed essence and investigation of physicochemical properties. Polym Bull 79(12):8217–8240

    Google Scholar 

  157. Maroufi LY, Tabibiazar M, Ghorbani M, Jahanban-Esfahlan A (2021) Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application. Int J Biol Macromol 187:179–188

    Article  CAS  PubMed  Google Scholar 

  158. Ciccone G, Dobre O, Gibson GM, Rey JM, Gonzalez-Garcia C, Vassalli M, Salmeron-Sanchez M, Tassieri M (2020) what caging force cells feel in 3D hydrogels: A rheological perspective. Adv Healthcare Mater 9(17):2000517

    Article  CAS  Google Scholar 

  159. Ravanbakhsh H, Bao G, Latifi N, Mongeau LG (2019) Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity. Mater Sci Eng, C 103:109861

    Article  CAS  Google Scholar 

  160. Unterman S, Charles LF, Strecker SE, Kramarenko D, Pivovarchik D, Edelman ER, Artzi N (2017) Hydrogel nanocomposites with independently tunable rheology and mechanics. ACS Nano 11(3):2598–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  162. Ahmed S (2018) Bio-based materials for food packaging: green and sustainable advanced packaging materials. Springer, Singapore

    Book  Google Scholar 

  163. Rashidzadeh B, Shokri E, Mahdavinia GR, Moradi R, Mohamadi-Aghdam S, Abdi S (2020) Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. Int J Biol Macromol 154:134–141

    Article  CAS  PubMed  Google Scholar 

  164. Yang Z, Xu H, Zhao X (2020) Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer. Adv Sci 7(9):1903718

    Article  CAS  Google Scholar 

  165. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  PubMed  Google Scholar 

  166. Ishwarya SP, Nisha P (2022) Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 62(16):4393–4417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Karimi Sani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirsa, S., Khodaei, S.M., Karimi Sani, I. et al. Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polym. Bull. 80, 10593–10632 (2023). https://doi.org/10.1007/s00289-022-04580-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04580-w

Keywords

Navigation