Skip to main content
Log in

In situ preparation of silver nanoparticle embedded composite nanofibrous membrane: a multi-layered biocidal air filter

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Deteriorating air quality has increased the need for designing composite integrated nanofibrous membranes, which are suitable for facemask technology providing efficient solution against microbial propagation and particulate matter. Through this research work, an aramid-based multilayered membrane is developed which provides significantly increased mechanical stability when compared to easily collapsing nanofibrous structures usually considered for air filtration applications. The developed filter is tested for its bacterial filtration efficiency through an Andersen sampler using Staphylococcus aureus as the challenge aerosol with mean particle size of 3.0 ± 0.3 μm. The Particulate Matter (with diameters ranging from 0.3 to 10 μm) filtration efficiency and Bacterial filtration efficiency of 99.41% and 99.51% was achieved, respectively, indicating its potential for applications ranging from facemasks (mainly for protection against airborne microorganisms) to industrial-scale air filters. Our study indicated that the combination of silver nanoparticles incorporated polyacrylonitrile nanofibers integrated with a layer of aramid based coaxial nanofibers offer a new strategy to construct advanced multifunctional membrane which could not only perform well as an antimicrobial filter but also remove particulate matter in air effectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F, Huang C (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302:1600353. https://doi.org/10.1002/mame.201600353

    Article  CAS  Google Scholar 

  2. Zhang R, Liu C, Hsu P, Zhang C, Liu N, Zhang J, Ryoung Lee H, Lu Y, Qiu Y, Chu S, Cui Y (2016) Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett 16:3642–3649. https://doi.org/10.1021/acs.nanolett.6b00771

    Article  CAS  PubMed  Google Scholar 

  3. Robert B, Nallathambi G (2020) A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air. Colloids Interface Sci Commun 37:100275. https://doi.org/10.1016/j.colcom.2020.100275

    Article  CAS  Google Scholar 

  4. Nallathambi G, Robert B, Esmeralda SP, Kumaravel J, Parthiban V (2020) Development of SPI/AC/PVA nano-composite for air-filtration and purification. Res J Text Appar 24:72–83. https://doi.org/10.1108/RJTA-09-2019-0044

    Article  CAS  Google Scholar 

  5. Karabulut FNH, Höfler G, Ashok Chand N, Beckermann GW (2021) Electrospun nanofibre filtration media to protect against biological or nonbiological airborne particles. Polym 13:3257. https://doi.org/10.3390/polym13193257

    Article  CAS  Google Scholar 

  6. Ji M, Tiwari AP, Oh HJ, Kim HY (2021) ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties. Colloids Surf A Physicochem Eng Asp 621:126564. https://doi.org/10.1016/j.colsurfa.2021.126564

    Article  CAS  Google Scholar 

  7. Su J, Yang G, Cheng C, Huang C, Xu H, Ke Q (2017) Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. J Colloid Interface Sci 507:386–396. https://doi.org/10.1016/j.jcis.2017.07.104

    Article  CAS  PubMed  Google Scholar 

  8. Sharma A, Kumar SR, Katiyar VK, Gopinath P (2021) Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano-Struct Nano-Objects 26:100708. https://doi.org/10.1016/j.nanoso.2021.100708

  9. Geltmeyer J, Teixido H, Meire M, Acker TV, Deventer K, Vanhaecke F, Hulle SV, Buysser KD, Clerck KD (2017) TiO2 functionalized nanofibrous membranes for removal of organic (micro)pollutants from water. Sep Purif Technol 179:533–541. https://doi.org/10.1016/j.seppur.2017.02.037

    Article  CAS  Google Scholar 

  10. Victor FS, Kugarajah V, Bangaru M, Ranjan S, Dharmalingam S (2021) Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination. Environ Sci Pollut Res 28:37520–37533. https://doi.org/10.1007/s11356-021-13202-3

  11. Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci: Part A - Pure Appl Chem 13:727–750. https://doi.org/10.1080/00222337908056685

    Article  CAS  Google Scholar 

  12. Yonezawa T, Toshima N (1992) Polymer- and micelle-protected gold/platinum bimetallic systems: preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods. J Mol Catal 83:167–181. https://doi.org/10.1016/0304-5102(93)87017-3

    Article  Google Scholar 

  13. Guo-wen HE, Fen-fang LI, Jie-bin WEN, Cent J (2015) DMAc used as a reducer for preparation of spherical silver nanoparticles with high dispersion. J Cent South Univ 22:445–449. https://doi.org/10.1007/s11771-015-2541-7

    Article  CAS  Google Scholar 

  14. Santos IP, Serra-Rodríguez C, Liz-Marzán LM (2000) Self-assembly of silver particle monolayers on glass from Ag+ solutions in DMF. J Colloid Interface Sci 221:236–241. https://doi.org/10.1006/jcis.1999.6590

    Article  CAS  Google Scholar 

  15. Pan SF, Ke XX, Wang TY, Liu Q, Zhong LB, Zheng YM (2019) Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind Eng Chem Res 58:984–993. https://doi.org/10.1021/acs.iecr.8b04893

    Article  CAS  Google Scholar 

  16. Karthick SA, Gobi N (2017) Nano silver incorporated electrospun polyacryloni-trile nanofibers and spun bonded polypropylene composite for aerosol filtration. J Ind Text 46:1342–1361. https://doi.org/10.1177/1528083715622428

    Article  CAS  Google Scholar 

  17. Liu B, Zhang S, Wang X, Yu J, Ding B (2015) Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. J Colloid Interface Sci 457:203–211. https://doi.org/10.1016/j.jcis.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  18. Cha D, Kim KW, Chu GH, Kim HY, Lee KH, Bhattarai N (2006) Mechanical behaviors and characterization of electrospun polysulfone/polyurethane blend nonwovens. Macromol Res 14:331–337. https://doi.org/10.1007/BF03219090

    Article  CAS  Google Scholar 

  19. Nimmanpipug P, Tashiro K, Rangsiman O (2006) Factors governing the three-dimensional hydrogen-bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds (4): similarity in local conformation and packing structure between a complicated three-arm model compound and the linear model compounds. J Phys Chem B 110:20858–20864. https://doi.org/10.1021/jp062058r

    Article  CAS  PubMed  Google Scholar 

  20. Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D (2016) The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92:27–37. https://doi.org/10.1016/j.jaerosci.2015.10.006

    Article  CAS  Google Scholar 

  21. Gobi N, Vijayalakshmi E, Berly R, Srinivasan NR (2018) Development of PAN nano fibrous filter hybridized by SiO2 nanoparticles electret for high efficiency air filtration. J Polym Mater 35:317. https://doi.org/10.32381/JPM.2018.35.03.6

    Article  CAS  Google Scholar 

  22. Robert B, Nallathambi G (2021) Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: a review. Environ Chem Lett 19:2551. https://doi.org/10.1007/s10311-020-01168-6

    Article  CAS  Google Scholar 

  23. Chen K, Zhang S, Liu B, Mao X, Sun G, Yu J, Al-Deyab SS, Ding B (2014) Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. RSC Adv 4:45760. https://doi.org/10.1039/c4ra07901a

    Article  CAS  Google Scholar 

  24. Lin CE, Wang J, Zhou MY, Zhu BK, Zhu LP, Gao CJ (2016) Poly(m-phenylene isophthalamide) (PMIA): a potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes. J Membr Sci 518:72–78. https://doi.org/10.1016/j.memsci.2016.06.042

    Article  CAS  Google Scholar 

  25. Chen Y, Qiu L, Ma X, Chu Z, Zhuang Z, Dong L, Du P, Xiong J (2020) Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. Solid State Ion 347:115253. https://doi.org/10.1016/j.ssi.2020.115253

    Article  CAS  Google Scholar 

  26. Venkatesham M, Ayodhya D, Madhusudhan A, Kumari AS, Veerabhadram G, Mangatayaru KG (2014) A novel green synthesis of silver nanoparticles using Gum Karaya: characterization, antimicrobial and catalytic activity studies. J Clust Sci 25:409–422. https://doi.org/10.1007/s10876-013-0620-1

    Article  CAS  Google Scholar 

  27. Sichani GN, Morshed M, Amirnasr M, Abedi D (2009) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116:1021–1029. https://doi.org/10.1002/app.31436

    Article  CAS  Google Scholar 

  28. Robert B, Nallathambi G (2021) Highly oriented poly (m-phenylene isophthalamide)/ polyacrylonitrile based coaxial nanofibers integrated with electrospun polyacrylonitrile-silver nanoparticle: application in air filtration of particulate and microbial contaminants. J App Polym Sci. https://doi.org/10.1002/app.52294

    Article  Google Scholar 

  29. He M, Chen M, Dou Y, Ding J, Yue H, Yin G, Chen X, Cui Y (2020) Electrospun silver nanoparticles-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) antibacterial composite nanofibers. Polym 12:305. https://doi.org/10.3390/polym12020305

    Article  CAS  Google Scholar 

  30. Lu WC, Chen CY, Cho CJ, Venkatesan M, Chiang WH, Yu YY, Lee CH, Lee RH, Rwei SP, Kuo CC (2021) Antibacterial activity and protection efficiency of polyvinyl butyral nanofibrous membrane containing thymol prepared through vertical electrospinning. Polymer 13:1122. https://doi.org/10.3390/polym13071122

    Article  CAS  Google Scholar 

  31. Zhu M, Hua D, Pan H, Wang F, Manshian B, Soenen SJ, Xiong R, Huang C (2018) Green electrospun and crosslinked poly(vinyl alcohol)/poly(acrylic acid) composite membranes for antibacterial effective air filtration. J Colloid Interface Sci 511:411–423. https://doi.org/10.1016/j.jcis.2017.09.101

    Article  CAS  PubMed  Google Scholar 

  32. Jiji S, Thenmozhi S, Kadirvelu K (2018) Comparison on properties and efficiency of bacterial and electrospun cellulose nanofibers. Fibers Polym 19:2498–2506. https://doi.org/10.1016/j.apsusc.2019.07.020

    Article  CAS  Google Scholar 

  33. Chen KN, Sari FNI, Ting JM (2019) Multifunctional TiO2/polyacrylonitrile nanofibers for high efficiency PM2.5 capture, UV filter, and anti-bacteria activity. Appl Surf Sci 493:157–164. https://doi.org/10.1016/j.apsusc.2019.07.020

    Article  CAS  Google Scholar 

  34. Shen B, Zhang D, Wei Y, Zhao Z, Ma X, Zhao X, Wang S, Yang W (2019) Preparation of Ag doped keratin/PA6 nanofiber membrane with enhanced air filtration and antimicrobial properties. Polymer 11:1511. https://doi.org/10.3390/polym11091511

    Article  CAS  Google Scholar 

  35. Bortolassi AC, Nagarajan S, de Araújo LB, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M (2019) Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C 102:718–729. https://doi.org/10.1016/j.msec.2019.04.094

    Article  CAS  Google Scholar 

  36. Canalli Bortolassi AC, Guerra VG, Aguiar ML, Soussan L, Cornu D, Miele P, Bechelany M (2019) Composites based on nanoparticle and pan electrospun nanofiber membranes for air filtration and bacterial removal. Nanomate 9(12):1740. https://doi.org/10.3390/nano9121740

    Article  CAS  Google Scholar 

  37. Zhang L, Li L, Wang L, Nie J, Ma G (2020) Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Appl Surf Sci 515:145962. https://doi.org/10.1016/j.apsusc.2020.145962

    Article  CAS  Google Scholar 

  38. Patil NA, Gore PM, Prakash NJ, Govindaraj P, Yadav R, Verma V, Shanmugarajan D, Patil S, Kore A, Kandasubramanian B (2021) Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. Chem Eng J 416:129152. https://doi.org/10.1016/j.cej.2021.129152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saikaew R, Intasanta V (2021) Versatile nanofibrous filters against fine particulates and bioaerosols containing tuberculosis and virus: Multifunctions and scalable processing. Sep Purif Technol 275:119171. https://doi.org/10.1016/j.seppur.2021.119171

    Article  CAS  Google Scholar 

  40. Zhu Z, Zhang Y, Bao L, Chen J, Duan S, Chen SC, Xu P, Wang WN (2021) Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation. Environ Sci Nano 8:1081. https://doi.org/10.1039/d0en01230k

    Article  CAS  Google Scholar 

  41. Blosi M, Costa AL, Ortelli S, Belosi F, Ravegnani F, Varesano A, Tonetti C, Zanoni I, Vineis C (2021) Polyvinyl alcohol/silver electrospun nanofibers: Biocidal filter media capturing virus size particles. J Appl Polym Sci 138(46):51380. https://doi.org/10.1002/app.51380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Council of Scientific & Industrial Research (CSIR), New Delhi, India, to carry out this research work successfully. (Sanction number—09/468/(0535) 2019 EMR—I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berly Robert.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Consent to participate

Both the authors give their consent to participation.

Consent to publication

Both the authors give their consent for the publication.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallathambi, G., Robert, B. In situ preparation of silver nanoparticle embedded composite nanofibrous membrane: a multi-layered biocidal air filter. Polym. Bull. 80, 10263–10287 (2023). https://doi.org/10.1007/s00289-022-04561-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04561-z

Navigation