Skip to main content

Advertisement

Log in

A Novel Green Synthesis of Silver Nanoparticles Using Gum Karaya: Characterization, Antimicrobial and Catalytic Activity Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Stable silver nanoparticles have been synthesized using gum karaya acting as both reducing and stabilizing agent without using any synthetic reagent. The reaction is performed using water, which is an environmentally safe solvent. This reaction was carried out in an autoclave at a pressure of 15 psi and 120 °C temperature by varying the time. The influence of different parameters such as time, change of concentration of silver nitrate and concentration of gum karaya on the formation of silver nanoparticles has been studied. The synthesized silver nanoparticles are characterized by UV–Vis spectroscopy, FTIR, XRD and TEM. UV–Vis analysis of the sample confirmed the formation of silver nanoparticles exhibiting a sharp peak at a wavelength of 420 nm. TEM micrographs showed the formation of well-dispersed silver nanoparticles of size 2–4 nm. The antimicrobial activity of silver nanoparticles stabilized in gum karaya is tested against Escherichia coli, Micrococcus luteus and is found to be possessing inhibiting property. The silver nanoparticles stabilized in gum karaya exhibited very good catalytic activity and the kinetics of the reaction was found to be pseudo first order with respect to the 4-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Tain, K. K. Wong, C. M. Ho, C. N. Lok, W. Y. Yu, C. M. Che, J. F. Chiu, and P. K. Tam (2007). Chem. Med. chem. 2, 129.

    Article  Google Scholar 

  2. J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt (2010). ACS Nano. 4, 6903.

    Article  CAS  Google Scholar 

  3. D. Tain, G. Yong, Y. Dai, X. Yan, and S. Liu (2009). Catal. Lett. 130, 211.

    Article  Google Scholar 

  4. Y. F. Chau and H. H. Yeh (2011). J. Nanopart. Res. 13, 637.

    Article  CAS  Google Scholar 

  5. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che (2006). J. Proteome. Res. 5, 916.

    Article  CAS  Google Scholar 

  6. A. L. Panacek, L. Kivtek, R. Prucek, K. Milan, R. Vecerova, and N. Pizurova (2006). J. Phys. Chem. B. 110, 16248.

    Article  CAS  Google Scholar 

  7. L. Bo, W. Yang, M. Chen, J. Gao, and Q. Xue (2009). Chem. Biodivers. 6, 111.

    Article  CAS  Google Scholar 

  8. B. Tomsic, B. Simoncic, B. Orel, L. Cerne, P. Tavcer, M. Zorko, and A. Jerman (2008). Sol–Gel Sci. Technol. 47, 44–57.

    Article  CAS  Google Scholar 

  9. X. Chen and H. J. Schluesener (2008). Toxicol. Lett. 176, 1.

    Article  CAS  Google Scholar 

  10. R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, and M. Burkhardt (2010). Environ. Pollut. 158, 2900.

    Article  CAS  Google Scholar 

  11. C. M. Jones and E. Hoek (2010). J. Nanopart Res. 12, 1531.

    Article  Google Scholar 

  12. K. S. Chou and C. Y. Ren (2000). Mater. Chem. Phys. 64, 241.

    Article  CAS  Google Scholar 

  13. F. Douglas, R. Yanez, J. Ros, S. Marın, A. E. Muniz, S. Alegret, and A. Merkoci (2008). J. Nanopart. Res. 10, 97.

    Article  CAS  Google Scholar 

  14. R. Yoksan and S. Chirachanchai (2009). Mater. Chem. Phys. 115, 296.

    Article  CAS  Google Scholar 

  15. M. Darroudi, M. B. Ahmad, K. shameli, A. H. Abdullah, and N. A. Ibrahim (2009). Solid state sci 11, 1621.

    Article  CAS  Google Scholar 

  16. K. Mallick, M. J. Witcomb, and M. S. Scurrel (2004). J. Mater. Sci. 39, 4459.

    Article  CAS  Google Scholar 

  17. R. Bhat, S. Ganachari, R. Deshpande, G. Ravindra, and A. Venkataraman (2013). J. Clust. Sci. 24, 107.

    Article  CAS  Google Scholar 

  18. M. starowicz, B. B. stypula, and J. Bana (2006). Electrochem. commun. 8, 227.

    Article  CAS  Google Scholar 

  19. A. Shkilnyy, M. Souce, P. Dubois, F. Warmont, M. L. Saboungi, and I. Chourpa (2009). Analyst 134, 1868.

    Article  CAS  Google Scholar 

  20. S. kheybari, N. Samadi, S. V. Hosseini, A. Fazeli, and M. R. Fazeli (2010). DARU 18, 168.

    CAS  Google Scholar 

  21. E. Filippo, D. Manno, and A. Serra (2009). Sens. Actuators. B. 138, 625.

    Article  CAS  Google Scholar 

  22. C. Zhang, Q. Yang, N. Zhan, L. Sun, H. Wang, Y. Song, and Y. Li (2010). Coll. Surf. A: Physicochem. Eng. Aspects. 362, 58.

    Article  CAS  Google Scholar 

  23. P. T. Anstas and J. C. Warner Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998).

    Google Scholar 

  24. R. A. Cross and B. Kalra (2002). Science 297, 803.

    Article  Google Scholar 

  25. P. Raveendran, J. Fu, and S. L. Wallen (2003). J. Am. Chem. Soc. 125, 13940.

    Article  CAS  Google Scholar 

  26. H. Huang and X. Yang (2004). Carbohydr. Res. 339, 2627.

    Article  CAS  Google Scholar 

  27. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan (2006). Carbohydr. Res. 341, 2012.

    Article  CAS  Google Scholar 

  28. J. F. Corbett (1999). Dyes and Pigments 41, 127.

    Article  CAS  Google Scholar 

  29. C. V. Rode, M. J. Vaidya, and R. V. Chaudhari (1999). Org. Process. Res. Dev. 3, 465.

    Article  CAS  Google Scholar 

  30. E. Pocurull, R. M. Marce, and F. Borrull (1996). J. Chromatogr. A. 738, 1.

    Article  CAS  Google Scholar 

  31. D. L. Cerfa, F. Irineib, and G. Mullera (1990). Carbohydr. Polym. 13, 375.

    Article  Google Scholar 

  32. E. Huttel (1983). Med. Welt. 34, 1383.

    CAS  Google Scholar 

  33. J. P. Capron, P. Zeitoun, and D. Julien (1981). Gastroenterol. Clin. Biol. 5, 67.

    CAS  Google Scholar 

  34. J. Guerre and M. Neuman (1979). Med. Chir. Dig. 8, 679.

    CAS  Google Scholar 

  35. K. M. Behall (1990). Adv. Exp. Med. Biol. 270, 7.

    Article  CAS  Google Scholar 

  36. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan (2006). Carbohydr. Res. 341, 2012.

    Article  CAS  Google Scholar 

  37. J. Lu, J. J. Bravo-Suarez, A. Takahashi, M. Haruta, and S. T. Oyama (2005). J. Catal. 232, 85.

    Article  CAS  Google Scholar 

  38. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramırez, and M. J. Yacaman (2005). Nanotechnology 16, 2346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Coordinator, DBT-OU-ISLARE, Instrumentation Laboratory (Funded by UGC), Osmania University and Center for Nanotechnology, University of Hyderabad for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guttena Veerabhadram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesham, M., Ayodhya, D., Madhusudhan, A. et al. A Novel Green Synthesis of Silver Nanoparticles Using Gum Karaya: Characterization, Antimicrobial and Catalytic Activity Studies. J Clust Sci 25, 409–422 (2014). https://doi.org/10.1007/s10876-013-0620-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0620-1

Keywords

Navigation