Skip to main content
Log in

Polymeric organic–inorganic C3N4/ZnO high-performance material for visible light photodegradation of organic pollutants

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Photocatalysis is a clean, cost-effective and time-efficient method for degradation of organic pollutants and also other usages such as CO2 photoreduction. In this field, the development of suitable photocatalysts that can be active under visible light irradiation has received much attention and research. To achieve this goal, making photocatalysts with a suitable bandgap can be effective. By combining several suitable materials and making nanocomposites, this goal can be achieved. However, the synthesis method, particle size, surface area and crystallinity can be effective on the photocatalytic properties of the nanocomposites. C3N4 is a low-cost material with good photoactivity properties. Also, this material is thermally and chemically stable. Zinc oxide also is a non-toxic, cost-effective and available photocatalyst. But some limitations such as wide band gap led to decreasing the visible light photoactivity of zinc oxide and also carbon nitride materials. Coupling an organic material like C3N4 with inorganic zinc oxide causes a heterojunction material with interesting properties in degradation of various organic pollutants such as in pesticides and organic dyes. This review accounts with ZnO-doped C3N4 heterostructure and advance methods of construction, photocatalytic efficiency, recycling stability and the mechanism of photodegradation. The photoactivity of ZnO–C3N4 nanocomposite is higher than ZnO and C3N4 nanomaterials. Moreover, modification of the ZnO–C3N4 nanocomposite with doping other metals such as Al, Mg, Ni, Cu, Ag significantly improves the photoactivity. The mechanism of photodegradation of this nanocomposite can be based on photo-oxidation and also photoreduction mechanism. Based on photoreduction mechanism this nanocomposite can be applied to CO2 photoreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mohammadzadeh Kakhki R, Tayebee R, Ahsani F (2017) New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J Mater Sci: Mater Electron 28:5941–5952

    CAS  Google Scholar 

  2. Mohammadzadeh Kakhki R, Karimian A, Hasan-nejad H, Ahsani F (2019) Zinc oxide–nanoclinoptilolite as a superior catalyst for visible photo-oxidation of dyes and green synthesis of pyrazole derivatives. J Inorg Organomet Polym Mater 29:1358–1367

    Article  CAS  Google Scholar 

  3. Mohammadzadeh Kakhki R, Tayebee R, Hedayat S (2018) Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl Organomet Chem 32:e4033

    Article  Google Scholar 

  4. Mohammadzadeh Kakhki R, Khorrampoor A, Rabbani M, Ahsani F (2017) Visible light photocatalytic degradation of textile waste water by Co doped NiFe2O4 nanocomposite. J Mater Sci: Mater Electron 28:4095–4101

    CAS  Google Scholar 

  5. Mohammadzadeh Kakhki R, Mohammadpoor M, Faridi R, Bahadori M (2020) The development of an artificial neural network–genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe. RSC Adv 10:5951–5960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mohammadzadeh Kakhki R, Hedayat S, Mohammadzadeh K (2019) Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. J Mater Sci: Mater Electron 30:8788–8795

    CAS  Google Scholar 

  7. Mohammadzadeh Kakhki R, Ahsani F, Mir N (2016) Enhanced photocatalytic activity of CuO–SiO2 nanocomposite based on a new Cu nanocomplex. J Mater Sci: Mater Electron 27:11509–11517

    CAS  Google Scholar 

  8. Tayebee R, Mohammadzadeh Kakhki R, Audebert P, Amini MM, Salehi M (2018) A robust UV–visible light-driven SBA-15-PS/phthalhydrazide nanohybrid material with enhanced photocatalytic activity in the photodegradation of methyl orange. Appl Organomet Chem 32:e4391

    Article  Google Scholar 

  9. Mohammadzadeh-Kakhki R, Ahsani F (2018) New and effective ZnO and Zn3 (VO4) 2 visible nano photocatalysts with enhanced photocatalytic performance. J Mater Sci: Mater Electron 29:3767–3774

    CAS  Google Scholar 

  10. Mohammadzadeh Kakhki R, Ahsani F (2020) Development of a novel and high performance visible-light-induced Cd3OSO4 nanophotocatalyst for degradation of diazinon. Appl Organomet Chem 34:e5770

    Article  CAS  Google Scholar 

  11. Yaghoobi Rahni S, Mohammadzadeh Kakhki R (2020) Facile and green synthesis of Cu3V2O8 nanostructures via Moringa peregrina natural extract as a high performance photo catalyst. Appl Organomet Chem 34:e5392

    Article  CAS  Google Scholar 

  12. Iqbal S, Bahadur A, Anwer S, Ali S, Saeed A, Muhammad Irfan R, Li H, Javed M, Raheel M, Shoaib M (2020) Shape and phase-controlled synthesis of specially designed 2D morphologies of l-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum. Appl Surf Sci 526:146691

    Article  CAS  Google Scholar 

  13. Kuvarega AT, Khumalo N, Dlamini D, Mamba BB (2018) Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep Purif Technol 191:122–133

    Article  CAS  Google Scholar 

  14. Iqbal S, Bahadur A, Anwer S, Ali S, Irfan RM, Li H, Shoaib M, Raheel M, Anjum TA, Zulqarnain M (2020) Effect of temperature and reaction time on the morphology of l-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light. Colloids Surf A 601:124984

    Article  CAS  Google Scholar 

  15. Flores NM, Pal U, Galeazzi R, Sandoval A (2014) Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv 4:41099–41110

    Article  CAS  Google Scholar 

  16. Hussain W, Malik H, Hussain RA, Hussain H, Green IR, Marwat S, Bahadur A, Iqbal S, Farooq MU, Li H, Badshah A (2019) Synthesis of MnS from single-and multi-source precursors for photocatalytic and battery applications. J Electron Mater 48:2278–2288

    Article  CAS  Google Scholar 

  17. Hussain MN, Shah SM, Shabir G, Bhatti AS, Badshah A, Bahadur A, Saboor A, Iqbal S, Khan K (2019) Iron and nickel doped tin (IV) oxide nanosheets: synthesis, characterization and applications in hybrid solar cells. Phys E 108:307–316

    Article  CAS  Google Scholar 

  18. Niu C, Lu YZ, Lieber CM (1993) Experimental realization of the covalent solid carbon nitride. Science 261:334–337

    Article  CAS  PubMed  Google Scholar 

  19. Zhu JJ, Xiao P, Li HL, Carabineiro SAC (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Han X, Yu H, Zou Y, Dong X (2019) Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants. Separ Purif Technol 226:128–137

    Article  CAS  Google Scholar 

  21. Murugesan P, Moses JA, Anandharamakrishnan C (2019) Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review. J Mater Sci 54:12206–12235

    Article  CAS  Google Scholar 

  22. Lu P, Hu X, Li Y, Zhang M, Liu X, He Y, Dong F, Fu M, Zhang Z (2018) One-step preparation of a novel SrCO3/g-C3N4 nanocomposite and its application in selective adsorption of crystal violet. RSC Adv 8:6315–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Paul DR, Sharma R, Panchal P, Nehra SP, Gupta AP, Sharma A (2019) Synthesis, characterization and application of silver doped graphitic carbon nitride as photocatalyst towards visible light photocatalytic hydrogen evolution. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.06.061

    Article  Google Scholar 

  24. Fan Q, Liu J, Yu Y, Zuo S, Li B (2017) A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl Surf Sci 391:360–368

    Article  CAS  Google Scholar 

  25. Li JR, Zhang Z, Lang JH, Wang JY, Zhang Q, Wang JS, Han Q, Yang JH (2018) Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition. J Lumin 204:573–780

    Article  CAS  Google Scholar 

  26. Ma PY, Yu Y, Xie JJ, Fu ZY (2017) Ag3PO4/CuO composites utilizing the synergistic effect of photocatalysis and Fenton-like catalysis to dispose organic pollutants. Adv Powder Technol 28:2797–2804

    Article  CAS  Google Scholar 

  27. Abubshait SA, Iqbal S, Abubshait HA, AlObaid AA, Al-Muhimeed TI, Abd-Rabboh HSM, Bahadur A, Li W (2021) Effective heterointerface combination of 1D/2D Co-NiS/S-g-C3N4 heterojunction for boosting spatial charge separation with enhanced photocatalytic degradation of organic pollutants and disinfection of pathogens. Colloids Surf A 628:127390

    Article  CAS  Google Scholar 

  28. Bahadur A, Iqbal S, Shoaib M, Saeed A (2018) Electrochemical study of specially designed graphene-Fe3O4-polyaniline nanocomposite as a high-performance anode for lithium-ion battery. Dalton Trans 47:15031–15037

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S, Su C, Ren H, Li M, Zhu L, Ge S, Wang M, Zhang Z, Li L, Cao X (2019) In situ fabrication of ZnO/g-C3N4 nanocomposites for photocatalytic degradation of methylene blue: synthesis procedure does matter. Nanomaterials 9:215

    Article  PubMed Central  PubMed  Google Scholar 

  30. Iqbal S, Bahadur A, Anwer S, Shoaib M, Liu G, Li H, Raheel M, Javed M, Khalid B (2020) Designing novel morphologies of l-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light. Cryst Eng Commun 22:4162–4173

    Article  CAS  Google Scholar 

  31. Kim J, Song KC, Foncillas S, Pratsinis SE (2001) Dopants for synthesis of stable bimodally porous Titania. J Eur Ceram Soc 21:763–2872

    Article  Google Scholar 

  32. Saravanan R, Gracia F, Stephen A, Chapter 2: Basic principles, mechanism, and challenges of photocatalysis. Eng Biol (Corpus ID: 695919)

  33. Khan SA, Arshad Z, Shahid S, Arshad I, Rizwan K, Sher M, Fatima U (2019) Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprooxacin. Compos B 175:107120

    Article  CAS  Google Scholar 

  34. Gao H, Yan S, Wang J, Zou Z (2014) Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton Trans 43:8178–8183

    Article  CAS  PubMed  Google Scholar 

  35. Paul DR, Gautam S, Panchal P, Nehra SP, Choudhary P, Sharma A (2020) ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5(8):3828–3838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Guan R, Li J, Zhang J, Zhao Z, Wang D, Zhai H, Sun D (2019) Photocatalytic performance and mechanistic research of ZnO/g-C3N4 on degradation of methyl orange. ACS Omega 4(24):20742–20747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sharma D, Saini A, Choudhary D, Kumari M, Chaudhary A, Dhayal V (2022) In-situ synthesis of ZnO modified g-C3N4 composite: a potential photocatalyst and adsorbent for waste water remediation. Mater Res Innov 26(2):65–75

    Article  CAS  Google Scholar 

  38. Javed M, Qamar MA, Shahid S, Alsaab HO, Asifa S (2021) Highly efficient visible light active Cu–ZnO/S-g-C3N4 nanocomposites for efficient photocatalytic degradation of organic pollutants. RSC Adv 11:37254–37267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ravichandran K, Sindhuja E (2019) Fabrication of cost-effective g-C3N4+Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation. Mater Chem Phys 221:203–215

    Article  CAS  Google Scholar 

  40. Ahmad I (2020) Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts for the degradation of organic pollutants. Sep Purif Technol 251:117372

    Article  CAS  Google Scholar 

  41. Zhu P, Min Hu, Duan M, Xie L, Zhao M (2020) High visible light response Z-scheme Ag3PO4/g-C3N4/ZnO composite photocatalyst for efficient degradation of tetracycline hydrochloride: preparation, properties and mechanism. J Alloy Compd 840:155714

    Article  CAS  Google Scholar 

  42. Rajendran R, Vignesh S, Sasireka A, Kalyana Sundar J, Manickam S, Chandrasekaran S, Shkir M, AlFaify S, Palanivel B, Arumugam E, Vairamuthu R (2022) Facile construction of novel ZnO and TiO2 combined g-C3N4 nanocomposite for superior visible-light photocatalytic organic pollutant degradation. Mater Technol 37(11):1651–1664

    Article  CAS  Google Scholar 

  43. Xing H, Ma H, Fu Y, Xue M, Zhang X, Dong X, Zhang X (2015) Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity. Mater Technol: Adv Perform Mater 30:122–127

    Article  CAS  Google Scholar 

  44. Mohammad A, Ahmad K, Qureshi A et al (2018) Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sens Actuators B 277:467–476

    Article  CAS  Google Scholar 

  45. Paul DR, Gautam S, Panchal P et al (2020) ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5(8):3828–3838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, Wang R, Yang Z, Du H, Jiang Y, Shen C, Liang K, Xu A (2015) Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin J Catal 36:2135–2144

    Article  CAS  Google Scholar 

  47. Yue B, Li Q, Iwai H, Kako T, Ye J (2011) Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater 12:034401

    Article  PubMed Central  PubMed  Google Scholar 

  48. Sundaram IM, Kalimuthu S, Ponniah G (2017) Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Compos Commun 5:64–71

    Article  Google Scholar 

  49. Liu W, Wang M, Xu C et al (2012) Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem Eng J 209:386–393

    Article  CAS  Google Scholar 

  50. Kim KJ, Kreider PB, Choi C, Chang CH, Ahn HG (2013) Visible-light-sensitive Nadoped p-type flower-like ZnO photocatalysts synthesized via a continuous flow microreactor. RSC Adv 3(31):12702–12710

    Article  CAS  Google Scholar 

  51. Xu Q, Zhao P, Shi YK et al (2020) Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism. New J Chem 44(16):6261–6268

    Article  CAS  Google Scholar 

  52. Lin P, Hu H, Lv H, et al (2018) Hybrid reduced graphene oxide/TiO2/graphitic carbon nitride composites with improved photocatalytic activity for organic pollutant degradation. Appl Phys A: Mater Sci Process 124

  53. Sher M, Javed M, Shahid S, Iqbal S, Qamar MA, Bahadur A, Qayyumd MA (2021) The controlled synthesis of g-C3N4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiation. RSC Adv 11:2025–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bahadur A, Iqbal S, Alsaab HO, Awwadd NS, Ibrahiumde HA (2021) Designing a novel visible-light-driven heterostructure Ni–ZnO/S-g-C3N4 photocatalyst for coloured pollutant degradation. RSC Adv 11:36518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Iqbal S, Bahadur A, Javed M, Hakami O, Irfan RM, Ahmad Z, AlObaid A, Al-Anazy MM, Baghdadi HB, Abd-Rabboh HSM, Al-Muhimeed TI, Liu G, Nawaz M (2021) Design Ag-doped ZnO heterostructure photocatalyst with sulfurized graphitic C3N4 showing enhanced photocatalytic activity. Mater Sci Eng B 272:115320

    Article  CAS  Google Scholar 

  56. Zhong Q, Lan H, Zhang M, Zhu H, Bu M (2020) Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram Int 46:12192–12199

    Article  CAS  Google Scholar 

  57. Sher M, Javed M, Shahid S, Iqbal S, Qamar MA, Bahadur A, Qayyum MA (2021) The controlled synthesis of g-C3N4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiation. RSC Adv 11:2025–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Qamar MA, Javed M, Shahid S, Iqbal S, Abubshait SA, Abubshait HA, Ramay SM, Mahmood A, Ghaithan HM (2021) Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J Environ Chem Eng 9:105534

    Article  CAS  Google Scholar 

  59. Qamar MA, Shahid S, Javed M, Iqbal S, Sher M, Bahadur A, Al-Anazy MM, Laref A, Li D (2021) Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf A 614:126176

    Article  CAS  Google Scholar 

  60. Qamar MA, Shahid S, Javed M, Sher M, Iqbal S, Bahadur A, Li D (2020) Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surf A: Physicochem Eng Aspects

  61. Hashem EM, Hamza MA, El-Shazly AN, Abd El-Rahman SA, El-Tanany EM, Mohamed RT, Allam NK (2021) Novel Z-scheme/type-II CdS@ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: kinetic and mechanistic insights. Chemosphere 277:128730

    Article  CAS  PubMed  Google Scholar 

  62. Khalilzadeh A, Shariati A (2018) Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: synthesis, process and kinetic study. Sol Energy 164:251

    Article  CAS  Google Scholar 

  63. Zhu Z, Chen C-Y, Ren-Jang Wu (2020) Hydrocarbon production by addition of Cu–ZnO on g-C3N4 for CO2 conversion. J Chin Chem Soc 67:1654–1660

    Article  CAS  Google Scholar 

  64. Sayed M, Zhu B, Kuang P, Liu X, Cheng B, Ghamdi AAA, Wageh S, Zhang L, Jiaguo Yu (2022) Adv Sustain Syst 6:2100264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Mohammadzadeh Kakhki.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Kakhki, R. Polymeric organic–inorganic C3N4/ZnO high-performance material for visible light photodegradation of organic pollutants. Polym. Bull. 80, 10697–10717 (2023). https://doi.org/10.1007/s00289-022-04551-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04551-1

Keywords

Navigation