Skip to main content
Log in

Preparation and properties of thermo-expandable microcapsules with anionic/nonionic waterborne polyurethane as the shell

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we developed a new type of thermo-expandable microcapsules (TEMs) with the anionic/nonionic waterborne polyurethane as the shell and low boiling point agent, n-hexane, as the blowing agent. Thermo-gravimetric analyzer (TGA), laser particle size analyzer, thermo-mechanical analyzer (TMA) and scanning electron microscope (SEM) were used to investigate the blowing agent encapsulation, particle sizes and expansion performances of the TEMs, respectively. Results showed that the nonionic hydrophilic monomer, polyethylene glycol monomethyl ether (MPEG), improved the amount of encapsulation and encapsulation efficiency of n-hexane in TEMs and affected the expansion performance of the TEMs. When the amount of MPEG was 13.4 wt%, the amount of encapsulation and encapsulation efficiency of n-hexane in TEMs could reach 13.2 wt% and 66%, respectively, with the particle size of about 80 nm. 1,4-Butanediol (BDO) enhanced the encapsulation of n-hexane in TEMs. When the amount of BDO was 33.2 mol %, DMPA was 6.7 wt % and MPEG was 13.4 wt %, respectively, the TEMs showed good thermo-expansion performance. The TEMs showed the onset expansion temperature of 206 °C, the peak expansion temperature of 220 °C, and the expansion ratio of 4.1 times, respectively. The successful foaming of the TEMs in epoxy resin indicates that the prepared TEMs have great potentials in foam material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27(7):500–503. https://doi.org/10.1002/pen.760270704

    Article  CAS  Google Scholar 

  2. Chen J, Liu T, Zhao L et al (2013) Experimental measurements and modeling of solubility and diffusivity of CO2 in polypropylene/micro- and nanocalcium carbonate composites. Ind Eng Chem Res 52(14):5100–5110. https://doi.org/10.1021/ie303587r

    Article  CAS  Google Scholar 

  3. Collias DI, Baird DG, Borggreve RJM (1994) Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18):3978–3983. https://doi.org/10.1016/0032-3861(94)90283-6

    Article  CAS  Google Scholar 

  4. Stefani PM, Barchi AT, Sabugal J et al (2003) Characterization of epoxy foams. J Appl Polym Sci 90(11):2992–2996. https://doi.org/10.1002/app.13006

    Article  CAS  Google Scholar 

  5. Gendron R, Champagne MF, Li H et al (2010) The supercritical state paradigm in thermoplastic foaming. Cell Polym 29(5):283–300. https://doi.org/10.1177/026248931002900502

    Article  CAS  Google Scholar 

  6. You M, Zhang XX, Wang XC et al (2010) Effects of type and contents of microencapsuled n-alkanes on properties of soft polyurethane foams. Thermochim Acta 500(1):69–75. https://doi.org/10.1016/j.tca.2009.12.013

    Article  CAS  Google Scholar 

  7. Rheem MJ, Jung H, Ha J et al (2017) Suspension polymerization of thermally expandable microspheres using low-temperature initiators. Colloids Polym Sci 295:171–180. https://doi.org/10.1007/s00396-016-3993-5

    Article  CAS  Google Scholar 

  8. Lebedeva NV, Samder SN, Ina M et al (2016) Multicore expandable microbubbles: controlling density and expansion temperature. Polymer 90:45–52. https://doi.org/10.1016/j.polymer.2016.02.050

    Article  CAS  Google Scholar 

  9. Park CB, Suh NP (1996) Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym Eng Sci 36(1):34–48. https://doi.org/10.1002/pen.10382

    Article  CAS  Google Scholar 

  10. Farzaneh S, Fitoussi J, Lucsas A et al (2013) Shape memory effect and properties memory effect of polyurethane. J Appl Polym Sci 128(5):3240–3249. https://doi.org/10.1002/app.38530

    Article  CAS  Google Scholar 

  11. Ling J, Rong MZ, Zhang MQ (2014) Effect of molecular weight of PEG soft segments on photo-stimulated self-healing performance of coumarin functionalized polyurethanes. Chin J Polym Sci 32(10):1286–1297. https://doi.org/10.1007/s10118-014-1522-x

    Article  CAS  Google Scholar 

  12. Ou CW, Su CH, Jeng US et al (2014) Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Appl Mater Interfaces 6(8):5685–5694. https://doi.org/10.1021/am500213t

    Article  CAS  PubMed  Google Scholar 

  13. Kou E, Lee S, Shin J et al (2013) Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Ind Eng Chem Res 52(44):15541–15548. https://doi.org/10.1021/ie402505s

    Article  CAS  Google Scholar 

  14. Azimi HR, Rezaei M, Abbasi F (2011) The effect of expansion conditions on the batch foaming dynamics of St-MMA copolymer. J Cell Plast 48:125–140. https://doi.org/10.1177/0021955x11432960

    Article  Google Scholar 

  15. Yasuhiro K, Daichi I (2010) Thermally expandable microcapsules for polymer foaming-relationship between expandability and viscoelasticity. Polym Eng Sci 50:835–842. https://doi.org/10.1002/pen.21595

    Article  CAS  Google Scholar 

  16. Hou ZS, Xia Y, Qu W et al (2015) Preparation and properties of thermoplastic expandable microspheres with P(VDC-AN-MMA) shell by suspension polymerization. Int J Polym Mater 64:427–431. https://doi.org/10.1080/00914037.2014.958831

    Article  CAS  Google Scholar 

  17. Hou ZS, Zhang H, Ji CX (2015) Preparation and properties of thermal-expandable microspheres with P(VDC-AN-St) shell by suspension polymerization. Polym Mater Sci Eng 31:49–52. https://doi.org/10.1080/00914037.2014.958831

    Article  CAS  Google Scholar 

  18. Vamvounis G, Jonsson M, Hult A (2013) Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. Eur Polym J 49:1503–1509. https://doi.org/10.1016/j.eurpolymj.2013.01.010

    Article  CAS  Google Scholar 

  19. Bai X, Li J, Wang CY (2020) Thermo-expandable microcapsules with polyurethane as the shell. J Polym Res 27:185. https://doi.org/10.1007/s10965-020-02160-y

    Article  CAS  Google Scholar 

  20. Alizadegan F, Pazokifard S, Mirabedini SM et al (2017) Polyurethane-based microcapsules containing reactive isocyanate compounds: study on preparation procedure and solvent replacement. Colloids Surf A 529:750–759. https://doi.org/10.1016/j.colsurfa.2017.06.058

    Article  CAS  Google Scholar 

  21. Maria K, Dimitrios G, Bekas B et al (2019) Microcapsule-based self-healing materials: healing efficiency and toughness reduction vs. capsule size. Compos B 171:78–86. https://doi.org/10.1016/j.compositesb.2019.04.030

    Article  CAS  Google Scholar 

  22. Rui W, Yao X (2020) Preparation of monosultap-polyurethane microcapsules in an inverse emulsion through interfacial polymerization. J Appl Polym Sci 137:48594. https://doi.org/10.1002/app.48594

    Article  CAS  Google Scholar 

  23. Li HY, Ma YJ, Li ZK et al (2018) Synthesis of novel multilayer composite microcapsules and their application in self-lubricating polymer composites. Composites Sci Technol 164:120–128. https://doi.org/10.1016/j.compscitech.2018.05.042

    Article  CAS  Google Scholar 

  24. Etienne J, Ahmet F, Pascal S et al (2017) One-step bulk fabrication of polymer-based microcapsules with hard-soft bilayer thick shells. Appl Mater Interfaces 9:37364–37373. https://doi.org/10.1021/acsami.7b09371

    Article  CAS  Google Scholar 

  25. Xue Y, Li C, Liu J et al (2020) Fabrication and characterization of hierarchical microcapsules with multi-storage cells for repeatable self-healing. Colloids Surf A 603:125–133. https://doi.org/10.1016/j.colsurfa.2020.125201

    Article  CAS  Google Scholar 

  26. He ZL, Jiang S, Li QF et al (2017) Facile and cost-effective synthesis of isocyanate microcapsules via polyvinyl alcohol-mediated interfacial polymerization and their application in self-healing materials. Compos Sci Technol 138:15–23. https://doi.org/10.1016/j.compscitech.2016.11.004

    Article  CAS  Google Scholar 

  27. Lu SF, Shen TW, Xing JW et al (2018) Preparation and characterization of cross-linked polyure-thane shell microencapsulated phase change materials by interfacial polymerization. Mater Lett 211:36–39. https://doi.org/10.1016/j.matlet.2017.09.074

    Article  CAS  Google Scholar 

  28. Sen K, Marta B, Scott R et al (2015) Core-shell polymeric microcapsules with superior thermal and solvent stability. Appl Mater Interfaces 7:10952–10956

    Article  Google Scholar 

  29. Jiao SZ, Sun ZC, Li FR et al (2019) Preparation and application of conductive polyaniline-coated thermally expandable microspheres. Polymers 11:22. https://doi.org/10.3390/polym11010022

    Article  CAS  Google Scholar 

  30. Vamvonis G, Magnus J, Eva M et al (2013) Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. Eur Polymer J 49:1503–1509. https://doi.org/10.1016/j.eurpolymj.2013.01.010

    Article  CAS  Google Scholar 

  31. Riou M, Ausiasb G, Grohensb Y et al (2020) Thermoplastic foaming with thermo-expandable microcapsules: Mathematical modeling and numerical simulation for extrusion process. Chem Eng Sci 227:115–122. https://doi.org/10.1016/j.ces.2020.115852

    Article  CAS  Google Scholar 

  32. Chen SY, Sun ZC, Li LH et al (2017) Preparation and characterization of conducting polymer-coated thermally expandable microspheres. Chin Chem Lett 28:658–662. https://doi.org/10.1016/j.cclet.2016.11.005

    Article  CAS  Google Scholar 

  33. Ham YR, Lee DH, Kim SH et al (2010) Microencapsulation of imidazole curing agent for epoxy resin. Ind Eng Chem 16:728–733. https://doi.org/10.1016/j.jiec.2010.07.011

    Article  CAS  Google Scholar 

Download references

Funding

No funding supports this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, J., Wang, C. et al. Preparation and properties of thermo-expandable microcapsules with anionic/nonionic waterborne polyurethane as the shell. Polym. Bull. 80, 10031–10049 (2023). https://doi.org/10.1007/s00289-022-04539-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04539-x

Keywords

Navigation