Skip to main content
Log in

Preparation of reusable cross-linked amidoxime polyacrylonitrile microspheres and their efficient adsorption of Cu (II) and Pb (II)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Acrylonitrile (AN)-based polymers with fairly active nitrile groups can be modified as an ideal polymer-based adsorbent material. In this contribution, we proposed a "two-solvent system of water and glycerol" strategy to achieve the complete miscibility of monomers and we designed a cross-linked network structure to effectively improve the mechanical strength and reusability of the adsorbent. Morphological and structural characterization of the amidoxime cross-linked polyacrylonitrile microspheres (H-CAN) showed that these particles present a spherical structure with diameter of 200–300 nm, the expected cross-linked structure, and amorphous properties. The adsorption performance of H-CAN was investigated under different conditions of contact time, pH and temperature. The time to reach adsorption equilibrium at pH 7 and temperature 25 °C was 60 min (Cu (II)) and 40 min (Pb (II)), respectively. The results were in accordance with the Langmuir model, which showed the maximum adsorption of 140.33 and 113.13 mg·g−1 for Cu (II) and Pb (II), respectively. Moreover, the adsorption capacity after seven repetitions was 89.5% (Cu (II)) and 91.0% (Pb (II)) of the initial values. Overall, H-CAN has found wide promising applications in wastewater treatment, with the advantages of simple synthesis, mild application conditions, and satisfactory reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kiani GR, Sheikhloie H, Arsalani N (2011) Heavy metal ion removal from aqueous solutions by functionalized polyacrylonitrile. Desalination 269(1–3):266–270. https://doi.org/10.1016/j.desal.2010.11.012

    Article  CAS  Google Scholar 

  2. Tu Y, Ren LF, Lin Y, Shao J, He Y (2022) Restricted fiber contraction during amidoximation process for reinforced-concrete structured nanofiber sphere with superior Sb (V) adsorption capacity. J Hazard Mater 426:127835. https://doi.org/10.1016/j.jhazmat.2021.127835

    Article  CAS  PubMed  Google Scholar 

  3. El-Bahy SM, El-Bahy ZM (2016) Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu (II), Mn (II) and Ni (II) by batch and column study. J Environ Chem Eng 4(1):276–286. https://doi.org/10.1016/j.jece.2015.10.040

    Article  CAS  Google Scholar 

  4. Baimenov AZ, Berillo DA, Moustakas K, Inglezakis VJ (2020) Efficient removal of mercury (II) from water by use of cryogels and comparison to commercial adsorbents under environmentally relevant conditions. J Hazard Mater 399:123056. https://doi.org/10.1016/j.jhazmat.2020.123056

    Article  CAS  PubMed  Google Scholar 

  5. Sun Y, Song X, Ma J, Yu H, Liu G, Chen F (2022) Preparation and characterization of a novel amidoxime-modified polyacrylonitrile/fly ash composite adsorbent and its application to metal wastewater treatment. Int J Environ Res Public Health 19(2):856. https://doi.org/10.3390/ijerph19020856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai Z, Sun Y, Zhang H, Ding D, Li L (2019) Rational synthesis of polyamidoxime/polydopamine-decorated graphene oxide composites for efficient uranium (VI) removal from mine radioactive wastewater. Ind Eng Chem Res 58(41):19280–19291. https://doi.org/10.1021/acs.iecr.9b03934

    Article  CAS  Google Scholar 

  7. Li H, Bi S, Liu L, Dong W, Wang X (2011) Separation and accumulation of Cu (II), Zn (II) and Cr (VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination 278(1–3):397–404. https://doi.org/10.1016/j.desal.2011.05.056

    Article  CAS  Google Scholar 

  8. Şölener M, Tunali S, Özcan AS, Özcan A, Gedikbey T (2008) Adsorption characteristics of lead (II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) composite from aqueous solutions. Desalination 223(1–3):308–322. https://doi.org/10.1016/j.desal.2007.01.221

    Article  CAS  Google Scholar 

  9. Daikh S, Ouis D, Benyoucef A, Mouffok B (2022) Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for acetaminophen. Chem Phys Lett 798:139565. https://doi.org/10.1016/j.cplett.2022.139565

    Article  CAS  Google Scholar 

  10. Naseem K, Begum R, Wu W, Usman M, Irfan A, Al-Sehemi AG, Farooqi ZH (2019) Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic acid) core/shell gel particles: adsorption isotherms and kinetic study. J Mol Liq 277:522–531. https://doi.org/10.1016/j.molliq.2018.12.054

    Article  CAS  Google Scholar 

  11. Xu G, Xie Y, Cao J, Tao M, Zhang W-Q (2016) Highly selective and efficient chelating fiber functionalized by bis(2-pyridylmethyl)amino group for heavy metal ions. Polym Chem 7(23):3874–3883. https://doi.org/10.1039/C6PY00335D

    Article  CAS  Google Scholar 

  12. Deng S, Zhang G, Li Y, Dou Y, Wang P (2016) Facile preparation of amidoxime-functionalized fiber by microwave-assisted method for the enhanced adsorption of chromium(vi) from aqueous solution. RSC Adv 6(69):64665–64675. https://doi.org/10.1039/C6RA11727A

    Article  CAS  Google Scholar 

  13. Jamil SNAM, Khairuddin M, Daik R (2015) Preparation of acrylonitrile/acrylamide copolymer beads via a redox method and their adsorption properties after chemical modification. e-Polym 15(1):45–54. https://doi.org/10.1515/epoly-2014-0109

    Article  CAS  Google Scholar 

  14. Zhao R, Li X, Sun B, Shen M, Tan X, Ding Y, Jiang Z, Wang C (2015) Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem Eng J 268:290–299. https://doi.org/10.1016/j.cej.2015.01.061

    Article  CAS  Google Scholar 

  15. Chaúque EFC, Dlamini LN, Adelodun AA, Greyling CJ, Catherine Ngila J (2016) Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Appl Surf Sci 369:19–28. https://doi.org/10.1016/j.apsusc.2016.02.018

    Article  CAS  Google Scholar 

  16. Muhammad Ekramul Mahmud HN, Huq AKO, Yahya RB (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6(18):14778–14791. https://doi.org/10.1039/C5RA24358K

    Article  CAS  Google Scholar 

  17. Venkateswarlu S, Yoon M (2015) Core-shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@DAPF) for fast removal of Pb (II) from aqueous solutions. ACS Appl Mater Interfaces 7(45):25362–25372. https://doi.org/10.1021/acsami.5b07723

    Article  CAS  PubMed  Google Scholar 

  18. Shao D, Hou G, Chi F, Lu X, Ren X (2021) Transformation details of poly(acrylonitrile) to poly(amidoxime) during the amidoximation process. RSC Adv 11(4):1909–1915. https://doi.org/10.1039/D0RA09096D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saeed K, Haider S, Oh T-J, Park S-Y (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322(2):400–405. https://doi.org/10.1016/j.memsci.2008.05.062

    Article  CAS  Google Scholar 

  20. Imel AE, Dadmun MD (2015) The impact of fullerenes on the ordering of polyacrylonitrile during nanocomposites formation. Polymer 75:134–140. https://doi.org/10.1016/j.polymer.2015.08.028

    Article  CAS  Google Scholar 

  21. Saber SEM, Jamil SNAM, Abdullah LC, Choong TSY, Ting TM (2021) Insights into the p-nitrophenol adsorption by amidoxime-modified poly(acrylonitrile-co-acrylic acid): characterization, kinetics, isotherm, thermodynamic, regeneration and mechanism study. RSC Adv 11(14):8150–8162. https://doi.org/10.1039/D0RA10910J

    Article  Google Scholar 

  22. Suvina V, Krishna SM, Nagaraju DH, Melo JS, Balakrishna RG (2018) Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater Lett 232:209–212. https://doi.org/10.1016/j.matlet.2018.08.096

    Article  CAS  Google Scholar 

  23. Zeng L, Liu Q, Lu M, Liang E, Wang G, Xu W (2019) Modified natural loofah sponge as an effective heavy metal ion adsorbent: amidoxime functionalized poly(acrylonitrile-g-loofah). Chem Eng Res Des 150:26–32. https://doi.org/10.1016/j.cherd.2019.07.021

    Article  CAS  Google Scholar 

  24. Sulu E, Biswas CS, Stadler FJ, Hazer B (2016) Synthesis, characterization, and drug release properties of macroporous dual stimuli responsive stereo regular nanocomposites gels of poly(N-isopropylacrylamide) and graphene oxide. J Porous Mater 24(2):389–401. https://doi.org/10.1007/s10934-016-0272-2

    Article  CAS  Google Scholar 

  25. Li Y, He J, Zhang K, Liu T, Hu Y, Chen X, Wang C, Huang X, Kong L, Liu J (2019) Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv 9(1):397–407. https://doi.org/10.1039/C8RA08638A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang M, Wang Z, Zhou X, Li S (2019) Efficient removal of heavy metal ions in wastewater by using a novel alginate-EDTA hybrid aerogel. Appl Sci 9(3):547. https://doi.org/10.3390/app9030547

    Article  CAS  Google Scholar 

  27. Verma M, Tyagi I, Chandra R, Gupta VK (2017) Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J Mol Liq 225:936–944. https://doi.org/10.1016/j.molliq.2016.04.045

    Article  CAS  Google Scholar 

  28. Elwakeel KZ, El-Bindary AA, Kouta EY, Guibal E (2018) Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu (II), Cd (II) and Pb (II) metal ions. Chem Eng J 332:727–736. https://doi.org/10.1016/j.cej.2017.09.091

    Article  CAS  Google Scholar 

  29. Zhang S, Shi Q, Christodoulatos C, Meng X (2019) Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: batch, spectroscopic, and modeling study. Chemosphere 233:405–413. https://doi.org/10.1016/j.chemosphere.2019.05.190

    Article  CAS  PubMed  Google Scholar 

  30. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J 168(1):68–76. https://doi.org/10.1016/j.cej.2010.12.037

    Article  CAS  Google Scholar 

  31. Flores-Cano JV, Leyva-Ramos R, Mendoza-Barron J, Guerrero-Coronado RM, Aragón-Piña A, Labrada-Delgado GJ (2013) Sorption mechanism of Cd (II) from water solution onto chicken eggshell. Appl Surf Sci 276:682–690. https://doi.org/10.1016/j.apsusc.2013.03.153

    Article  CAS  Google Scholar 

  32. Hua R, Li Z (2014) Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem Eng J 249:189–200. https://doi.org/10.1016/j.cej.2014.03.097

    Article  CAS  Google Scholar 

  33. Yuan X, An N, Zhu Z, Sun H, Zheng J, Jia M, Lu C, Zhang W, Liu N (2018) Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Process Saf Environ Prot 119:320–329. https://doi.org/10.1016/j.psep.2018.08.012

    Article  CAS  Google Scholar 

  34. Xiyili H, Çetintaş S, Bingöl D (2017) Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics. P Process Saf Environ Prot 109:288–300. https://doi.org/10.1016/j.psep.2017.04.012

    Article  CAS  Google Scholar 

  35. Cegłowski M, Gierczyk B, Frankowski M, Popenda Ł (2018) A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React Funct Polym 131:64–74. https://doi.org/10.1016/j.reactfunctpolym.2018.07.006

    Article  CAS  Google Scholar 

  36. Jang HM, Yoo S, Choi YK, Park S, Kan E (2018) Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour Technol 259:24–31. https://doi.org/10.1016/j.biortech.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Oyola Y, Tsouris C, Hexel CR, Mayes RT, Janke CJ, Dai S (2013) Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind Eng Chem Res 52(27):9433–9440. https://doi.org/10.1021/ie400587f

    Article  CAS  Google Scholar 

  38. He J, Zhang K, Wu S, Cai X, Chen K, Li Y, Sun B, Jia Y, Meng F, Jin Z, Kong L, Liu J (2016) Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J Hazard Mater 303:119–130. https://doi.org/10.1016/j.jhazmat.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Zhang Z, Li R, Wang JJ, Ali A (2016) Removal of Pb (II) and Cd (II) ions from aqueous solution by thiosemicarbazide modified chitosan. Int J Biol Macromol 86:876–884. https://doi.org/10.1016/j.ijbiomac.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  40. Gao B, Gao Y, Li Y (2010) Preparation and chelation adsorption property of composite chelating material poly (amidoxime)/SiO2 towards heavy metal ions. Chem Eng J 158(3):542–549. https://doi.org/10.1016/j.cej.2010.01.046

    Article  CAS  Google Scholar 

  41. Rahman ML, Sarkar SM, Farid EM, Arshad SE, Sarjadi MS, Wid N (2018) Synthesis of tapioca cellulose-based poly (amidoxime) ligand for removal of heavy metal ions. J Macromol Sci Part B Phys 57(2):83–99. https://doi.org/10.1080/00222348.2018.1432179

    Article  CAS  Google Scholar 

  42. Chen Y, Zhao W, Zhao H, Dang J, Jin R, Chen Q (2020) Efficient removal of Pb (II), Cd (II), Cu (II) and Ni (II) from aqueous solutions by tetrazole-bonded bagasse. Chem Phys 529:110550. https://doi.org/10.1016/j.chemphys.2019.110550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Department of Education Basic Research Project of Liaoning Province (J2019018) and Dalian Science and Technology Innovation Fund Project of Dalian City (2019J12GX047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhang or Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zeng, J., Tang, S. et al. Preparation of reusable cross-linked amidoxime polyacrylonitrile microspheres and their efficient adsorption of Cu (II) and Pb (II). Polym. Bull. 80, 9811–9831 (2023). https://doi.org/10.1007/s00289-022-04534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04534-2

Keywords

Navigation