Skip to main content
Log in

Optically transparent and thermally conductive composite films of α-alumina and highly refractive polyimide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Optically transparent and thermally conductive polymer composites are required for next-generation opto-electronic devices. The present work aimed at creating polymer composite films with enough optical transparency and superior normal-to-plane thermal conductivity. We successfully prepared composite films with transmittances more than 80% (at a wavelength of 600 nm) and thermal conductivity more than 0.7 Wm−1 K−1. For the polymeric matrix, we employed a highly refractive polyimide. α-alumina particles distributed in the polyimide matrix enhanced the normal-to-plane thermal conductivity of the composite films significantly. Similar refractive indices of the matrix polyimide and α-alumina particles suppressed light scattering in the polymer composites. The clever choice of the constituent materials conquered a trade-off between optical transparency and thermal conductivity in polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ngo I, Jeon S, Byon C (2016) Thermal conductivity of transparent and flexible polymers containing fillers: a literature review. Int J Heat Mass Tran 98:219–226. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.082

    Article  CAS  Google Scholar 

  2. Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, New York

    Book  Google Scholar 

  3. Zhou L, Yang Z, Luo W, Han X, Jang S, Dai J, Yang B, Hu L (2016) Thermally conductive, electrical insulating, optically transparent bi-layer nanopaper. ACS Appl Mater Interfaces 8:28838–28843. https://doi.org/10.1021/acsami.6b09471

    Article  CAS  PubMed  Google Scholar 

  4. Uetani K, Okada T, Oyama HT (2016) Thermally conductive and optically transparent flexible films with surface-exposed nanocellulose skeletons. J Mater Chem C 4:9697–9703. https://doi.org/10.1039/C6TC03318K

    Article  CAS  Google Scholar 

  5. Zheng H, Lei X, Cheng T, Liu S, Zeng X, Sun R (2017) Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers. Nanotechnology 28:265204. https://doi.org/10.1088/1361-6528/aa72d6

    Article  CAS  PubMed  Google Scholar 

  6. Wu X, Gao Y, Yao H, Sun K, Fan R, Li X, An Y, Lei Y, Zhang Y (2020) Flexible and transparent polymer/cellulose nanocrystal nanocomposites with high thermal conductivity for thermal management application. J Appl Polym Sci 137:48864. https://doi.org/10.1002/app.48864

    Article  CAS  Google Scholar 

  7. Hu Z, Wang S, Liu Y, Qu Z, Tan Z, Wu K, Shi J, Liang L, Lu M (2020) Constructing a layer-by-layer architecture to prepare a transparent, strong, and thermally conductive boron nitride nanosheet/cellulose nanofiber multilayer film. Ind Eng Chem Res 59:4437–4446. https://doi.org/10.1021/acs.iecr.9b05602

    Article  CAS  Google Scholar 

  8. Wu K, Liu D, Lei C, Xue S, Fu Q (2020) Is filler orientation always good for thermal management performance: a visualized study from experimental results to simulative analysis. Chem Eng J 394:124929. https://doi.org/10.1016/j.cej.2020.124929

    Article  CAS  Google Scholar 

  9. Sato K, Tominaga Y, Hotta Y, Imai Y (2022) A facile method to prepare layered solid fillers-based polymer composites with isotropic thermal conductivity. Compos Part A-Appl Sci Manuf 154:106776. https://doi.org/10.1016/j.compositesa.2021.106776

    Article  CAS  Google Scholar 

  10. Poostforush M, Azizi H (2014) Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane. Express Polym Lett 8:293–299

    Article  Google Scholar 

  11. Loste J, Lopez-Cuesta JM, Billon L, Garay H, Save M (2019) Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog Polym Sci 89:133–158. https://doi.org/10.1016/j.progpolymsci.2018.10.003

    Article  CAS  Google Scholar 

  12. Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45:630–638. https://doi.org/10.1016/j.eurpolymj.2008.12.031

    Article  CAS  Google Scholar 

  13. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

    Article  Google Scholar 

  14. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465. https://doi.org/10.1039/B608177K

    Article  CAS  PubMed  Google Scholar 

  15. Shilpa KN, Nithin KS, Sachhidananda S, Madhukar BS (2017) Visibly transparent PVA/sodium doped dysprosia (Na2Dy2O4) nano composite films, with high refractive index: an optical study. J Alloy Compd 694:884–891. https://doi.org/10.1016/j.jallcom.2016.10.004

    Article  CAS  Google Scholar 

  16. Lin H, Day DE, Stoffer JO (1992) Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites. Polym Eng Sci 32:344–350. https://doi.org/10.1002/pen.760320507

    Article  CAS  Google Scholar 

  17. Tan MC, Patil SD, Riman RE (2010) Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications. ACS Appl Mater Interfaces 2:1884–1891. https://doi.org/10.1021/am100228j

    Article  CAS  PubMed  Google Scholar 

  18. Zhang K, Xiao GD, Zeng Z, Wan C, Li J, Xin S, He X, Deng S, Zhang Y, Cui C, He Y, Liu L, Ku CS, Yuen MMF (2019) A novel thermally conductive transparent die attach adhesive for high performance LEDs. Mater Lett 235:216–219. https://doi.org/10.1016/j.matlet.2018.09.170

    Article  CAS  Google Scholar 

  19. Liu J, Nakamura Y, Terraza CA, Shibasaki Y, Ando S, Ueda M (2008) Highly refractive polyimides derived from 2,8-bis(p-aminophenylenesulfanyl) dibenzothiophene and aromatic dianhydrides. Macromol Chem Phys 209:195–203. https://doi.org/10.1002/macp.200700305

    Article  CAS  Google Scholar 

  20. You N, Suzuki Y, Yorifuji D, Ando S, Ueda M (2008) Synthesis of high refractive index polyimides derived from 1,6-bis(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10-tetrathiaanthracene and aromatic dianhydrides. Macromolecules 41:6361–6366. https://doi.org/10.1021/ma800982x

    Article  CAS  Google Scholar 

  21. You N, Fukuzaki N, Suzuki Y, Nakamura Y, Higashihara T, Ando S, Ueda M (2009) Synthesis of high-refractive index polyimide containing selenophene unit. J Polym Sci Pol Chem 47:4428–4434. https://doi.org/10.1002/pola.23497

    Article  CAS  Google Scholar 

  22. Tapaswi PK, Choi M, Jeong K, Ando S, Ha C (2015) Transparent aromatic polyimides derived from thiophenyl-substituted benzidines with high refractive index and small birefringence. Macromolecules 48:3462–3474. https://doi.org/10.1021/acs.macromol.5b00432

    Article  CAS  Google Scholar 

  23. Kim H, Ku B, Goh M, Ko H, Ando S, You N (2019) Synergistic effect of sulfur and chalcogen atoms on the enhanced refractive indices of polyimides in the visible and near-infrared regions. Macromolecules 52:827–834. https://doi.org/10.1021/acs.macromol.8b02139

    Article  CAS  Google Scholar 

  24. Weber MJ (2003) Handbook of optical materials. CRC Press, Florida

    Google Scholar 

  25. Gao BZ, Xua JZ, Pengc JJ, Kang FY, Dua HD, Lia J, Chiang SW, Xu CJ, Hu N, Ning XS (2015) Experimental and theoretical studies of effective thermal conductivity of composites made of silicone rubber and Al2O3 particles. Thermochim Acta 614:1–8. https://doi.org/10.1016/j.tca.2015.06.005

    Article  CAS  Google Scholar 

  26. Sato K, Ijuin A, Hotta Y (2015) Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram Int 41:10314–10318. https://doi.org/10.1016/j.ceramint.2015.04.088

    Article  CAS  Google Scholar 

  27. Saito K, Sato K, Tominaga Y, Imai Y (2022) Computational prediction of microstructures in α-alumina/PMMA composites and its experimental verification. Polym Compos 43:339–346. https://doi.org/10.1002/pc.26378

    Article  CAS  Google Scholar 

  28. Fisher TS (2014) Thermal energy at the nanoscale. World Scientific, Singapore

    Google Scholar 

  29. Ni H, Liu J, Wang Z, Yang S (2015) A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 28:16–27. https://doi.org/10.1016/j.jiec.2015.03.013

    Article  CAS  Google Scholar 

  30. Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology. Elsevier, Amsterdam

    Google Scholar 

  31. Sato K, Yilmaz H, Ijuin A, Hotta Y, Watari K (2012) Acetic acid mediated interactions between alumina surfaces. Appl Surf Sci 258:4011–4015. https://doi.org/10.1016/j.apsusc.2011.12.091

    Article  CAS  Google Scholar 

  32. Xie S, Zhu B, Li J, Wei X, Xu Z (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23:797–801. https://doi.org/10.1016/j.polymertesting.2004.03.005

    Article  CAS  Google Scholar 

  33. Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishi K, Watari K (2010) Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J Mater Chem 20:2749–2752. https://doi.org/10.1039/B924997D

    Article  CAS  Google Scholar 

  34. Tanimoto M, Yamagata T, Miyata K, Ando S (2013) Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl Mater Interfaces 5:4374–4382. https://doi.org/10.1021/am400615z

    Article  CAS  PubMed  Google Scholar 

  35. Xiao T, Fan X, Fan D, Li Q (2017) High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films. Polym Bull 74:4561–4575. https://doi.org/10.1007/s00289-017-1974-6

    Article  CAS  Google Scholar 

  36. Guo Y, Zhou Y, Xu Y (2021) Engineering polymers with metal-like thermal conductivity-Present status and future perspectives. Polymer 233:124168. https://doi.org/10.1016/j.polymer.2021.124168

    Article  CAS  Google Scholar 

  37. Sigmund WM, Bell NS, Bergström L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574. https://doi.org/10.1111/j.1151-2916.2000.tb01432.x

    Article  CAS  Google Scholar 

  38. Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359. https://doi.org/10.1111/j.1151-2916.2000.tb01560.x

    Article  CAS  Google Scholar 

  39. Sato K, Yilmaz H, Hotta Y, Ijuin A, Watari K (2009) Dispersion of ceramic particles in aqueous media with surface-grafted dispersant. J Am Ceram Soc 92:256–259. https://doi.org/10.1111/j.1551-2916.2008.02838.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on results obtained from a project, JPNP16010, commissioned by the New Energy and Industrial Technology Development Organization of Japan (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kimiyasu Sato or Yusuke Imai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 476 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Tominaga, Y. & Imai, Y. Optically transparent and thermally conductive composite films of α-alumina and highly refractive polyimide. Polym. Bull. 80, 9479–9488 (2023). https://doi.org/10.1007/s00289-022-04528-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04528-0

Keywords

Navigation