Skip to main content
Log in

Flame retardant coating of textile fabrics based on ionic liquids with self-extinguishing, high thermal stability and mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research focuses on the preparation of several coating pastes using polyacrylate PA, polyurethane PU and Latex mixed with different ionic liquids, namely [Py, PF6] and [A, PF6]. These prepared pastes were applied to one side of a cotton/polyester blend fabric, by knife coating to improve their flame resistance and water repellency. The morphology of pristine fabric and fabric coated with ionic liquids was studied by scanning electron microscope. The mechanical resistance according to NF EN ISO 13934-1:2013 standard shows that the functionalization of fabrics by [A, PF6] and [Py, PF6] using the knife coating method does not affect the mechanical resistance of the fabrics elaborated. The vertical burning test according to ISO 6940:2004 (F) shows that fabrics treated with polymers + ionic liquids do not burn even increasing the flame time to 20 s with a residue of 98% for PU + 2% [Py, PF6]. Thermogravimetric analysis shows that the thermal stability of fabrics coated with polymers + ionic liquids \({\text{PF}}_{6}^{ - }\) has been improved compared to that of pristine fabric and fabrics coated only with polymers. The washing test carried out according to the ISO 105-C06:2010 standard shows that fabrics treated with ionic + polymer liquids retain the flame-retardant property for up to 12 washing cycles. Then, a drop test and a rain test confirmed that the textile materials coated with polymers + \({\text{PF}}_{6}^{ - }\) do not absorb water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Jesus SS, MacielFilho R (2022) Are ionic liquids eco-friendly? Renew Sustain Energy Rev 157:112039. https://doi.org/10.1016/j.rser.2021.112039

    Article  CAS  Google Scholar 

  2. Miao L, Song Z, Zhu D, Li L, Gan L, Liu M (2021) Ionic liquids for supercapacitive energy storage: a mini-review. Energy Fuels 35:8443–8455. https://doi.org/10.1021/acs.energyfuels.1c00321

    Article  CAS  Google Scholar 

  3. Ray A, Saruhan B (2021) Application of ionic liquids for batteries and supercapacitors. Materials 14:2942. https://doi.org/10.3390/ma14112942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu J et al (2021) Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv Funct Mater 31:2011102. https://doi.org/10.1002/adfm.202011102

    Article  CAS  Google Scholar 

  5. Brzęczek-Szafran A et al (2021) Protic ionic liquids from di- or triamines: even cheaper Brønsted acidic catalysts. Green Chem 23:4421–4429. https://doi.org/10.1039/D1GC00515D

    Article  Google Scholar 

  6. Qu Y, Zhao Y, Li D, Sun J (2022) Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products. Curr Opin Green Sustain Chem 34:100599. https://doi.org/10.1016/j.cogsc.2022.100599

    Article  CAS  Google Scholar 

  7. Rogstad DT, Einarsrud M-A, Svensson AM (2021) Evaluation of selected ionic liquids as electrolytes for silicon anodes in Li-ion batteries. J Electrochem Soc 168:110506. https://doi.org/10.1149/1945-7111/ac330f

    Article  CAS  Google Scholar 

  8. Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP (2021) Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: from simple antiseptics to tunable antimicrobials. Int J Mol Sci 22:6793. https://doi.org/10.3390/ijms22136793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng T et al (2022) Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: improving thermal stability, flame retardancy, and smoke suppression. Polym Degrad Stab 199:109899. https://doi.org/10.1016/j.polymdegradstab.2022.109899

    Article  CAS  Google Scholar 

  10. Wu R, Ma L, Liu XY (2022) From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics. Adv Sci 9:2103981. https://doi.org/10.1002/advs.202103981

    Article  CAS  Google Scholar 

  11. Gao M, Guo G, Chai Z, Yi D, Qian L (2022) The flame retardancy of ionic liquid functionalized graphene oxide in unsaturated polyester resins. Fire Mater 46:743–752. https://doi.org/10.1002/fam.3020

    Article  CAS  Google Scholar 

  12. Wang Y, Jia X, Shi H, Hao J, Qu H, Wang J (2021) Graphene nanoplatelets hybrid flame retardant containing ionic liquid and ammonium polyphosphate for modified bismaleimide resin: excellent flame retardancy, thermal stability, water resistance and unique dielectric properties. Materials 14:6406. https://doi.org/10.3390/ma14216406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S-H, Xu Z-L, Zhang L (2021) Effect of cyano ionic liquid on flame retardancy of melamine. J Therm Anal Calorim 144:305–314. https://doi.org/10.1007/s10973-020-10245-5

    Article  CAS  Google Scholar 

  14. Guo Y, Chen X, Cui J, Guo J, Zhang H, Yang B (2021) Effect of ionic liquid octyltriphenylphosphonium-chelated orthoborates on flame retardance of epoxy. Polym Adv Technol 32:1579–1596. https://doi.org/10.1002/pat.5195

    Article  CAS  Google Scholar 

  15. Luo T, Jiao C, Chen X, Jiang H (2022) Flame-retardant effect of modified molecular sieve by ionic liquid in TPU. J Therm Anal Calorim 147:4141–4150. https://doi.org/10.1007/s10973-021-10840-0

    Article  CAS  Google Scholar 

  16. Wei R, Yang B, He C, Jin L, Zhang X, Zhao C (2022) Versatile and robust poly (ionic liquid) coatings with intelligent superhydrophilicity/superhydrophobicity switch in high-efficient oil-water separation. Sep Purif Technol 282:120100. https://doi.org/10.1016/j.seppur.2021.120100

    Article  CAS  Google Scholar 

  17. Xu J, Zhi Y, Wei S, Wei Y, Chen L (2021) Environmental and performance assessment of fabricated hydrophobic and flame-retardant cotton fabrics with functional integrated grapheme. In Review, preprint, https://doi.org/10.21203/rs.3.rs-830309/v1

  18. Yan J, Mangolini F (2021) Engineering encapsulated ionic liquids for next-generation applications. RSC Adv 11:36273–36288. https://doi.org/10.1039/D1RA05034F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ficanha AMM, Oro CED, Franceschi E, Dallago RM, Mignoni ML (2021) Evaluation of different ionic liquids as additives in the immobilization of lipase CAL B by sol–gel technique. Appl Biochem Biotechnol 193:2162–2181. https://doi.org/10.1007/s12010-021-03533-9

    Article  CAS  PubMed  Google Scholar 

  20. El Messoudi M, Boukhriss A, Cherkaoui O, El Kouali M, Gmouh S (2020) Adsorption–desorption kinetics of silica coated on textile fabrics by the sol–gel process. J Coat Technol Res 17:371–380. https://doi.org/10.1007/s11998-019-00281-8

    Article  CAS  Google Scholar 

  21. Che Q, Fan H, Duan X, Feng F, Mao W, Han X (2018) Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J Mol Liq 269:666–674. https://doi.org/10.1016/j.molliq.2018.08.030

    Article  CAS  Google Scholar 

  22. Yoshida Y, Fujie K, Lim D, Ikeda R, Kitagawa H (2019) Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew Chem Int Ed 58:10909–10913. https://doi.org/10.1002/anie.201903980

    Article  CAS  Google Scholar 

  23. Suo H, Xu L, Xue Y, Qiu X, Huang H, Hu Y (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydr Polym 23:115914. https://doi.org/10.1016/j.carbpol.2020.115914

    Article  CAS  Google Scholar 

  24. Bhushan T, Chandrashekhar A, Prasat SV, Reddy IR (2020) Effect of substrate surface roughness on adhesion of titanium nitride coatings deposited by physical vapour deposition technique. In: IOP conference series: materials science and engineering, vol 981, pp 042022. https://doi.org/10.1088/1757-899X/981/4/042022

  25. Smith WC (2019) Commentary/overview of textile coating and lamination. Smart textile coatings and laminates. Elsevier, Amsterdam, pp 3–10. https://doi.org/10.1016/B978-0-08-102428-7.00001-8

    Chapter  Google Scholar 

  26. Tian Y et al (2022) Applications of adhesives in textiles: a review. Eur Polym J 167:111089. https://doi.org/10.1016/j.eurpolymj.2022.111089

    Article  CAS  Google Scholar 

  27. Sobkowicz-Kline M, Budhlall BM, Mead JL (2017) Synthetic resins and plastics. In: Kent JA, Bommaraju TV, Barnicki SD (eds) Handbook of industrial chemistry and biotechnology. Springer International Publishing, Cham, pp 1397–1462. https://doi.org/10.1007/978-3-319-52287-6_25

    Chapter  Google Scholar 

  28. Wu Y et al (2020) A type of silicone modified styrene-acrylate latex for weatherable coatings with improved mechanical strength and anticorrosive properties. React Funct Polym 148:104484. https://doi.org/10.1016/j.reactfunctpolym.2020.104484

    Article  CAS  Google Scholar 

  29. Dogan M, Dogan SD, Savas LA, Ozcelik G, Tayfun U (2022) Flame retardant effect of boron compounds in polymeric materials. Compos Part B Eng 222:109088. https://doi.org/10.1016/j.compositesb.2021.109088

    Article  CAS  Google Scholar 

  30. Liu X et al (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part Appl Sci Manuf 119:291–298. https://doi.org/10.1016/j.compositesa.2019.02.009

    Article  CAS  Google Scholar 

  31. Wang X, Zhang J, Liu J, Luo J (2022) Phytic acid-based adhesion promoter for UV-curable coating: high performance, low cost, and eco-friendliness. Prog Org Coat 167:106834. https://doi.org/10.1016/j.porgcoat.2022.106834

    Article  CAS  Google Scholar 

  32. Feng Y, Zhou Y, Li D, He S, Zhang F, Zhang G (2017) A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydr Polym 175:636–644. https://doi.org/10.1016/j.carbpol.2017.06.129

    Article  CAS  PubMed  Google Scholar 

  33. He P et al (2018) Preparation and flame retardancy of reactive flame retardant for cotton fabric. J Therm Anal Calorim 132:1771–1781. https://doi.org/10.1007/s10973-018-7057-6

    Article  CAS  Google Scholar 

  34. Lin D, Zeng X, Li H, Lai X, Wu T (2019) One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J Colloid Interface Sci 533:198–206. https://doi.org/10.1016/j.jcis.2018.08.060

    Article  CAS  PubMed  Google Scholar 

  35. Boukhriss A, Gmouh S, Hannach H, Roblin J-P, Cherkaoui O, Boyer D (2016) Treatment of cotton fabrics by ionic liquid with PF6—anion for enhancing their flame retardancy and water repellency. Cellulose 23:3355–3364. https://doi.org/10.1007/s10570-016-1016-9

    Article  CAS  Google Scholar 

  36. Fakin D, Golob D, Stjepanovič Z (2008) The effect of pretreatment on the environment and dyeing properties of a selected cotton knitted fabric. Fibres & Textiles in Eastern Europe, vol 16, issue 2, pp 101–104

  37. Bentis A, Boukhriss A, Grancaric AM, El Bouchti M, El Achaby M, Gmouh S (2019) Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26:2139–2153. https://doi.org/10.1007/s10570-018-2206-4

    Article  CAS  Google Scholar 

  38. Bramhecha I, Sheikh J (2019) Development of sustainable citric acid-based polyol to synthesize waterborne polyurethane for antibacterial and breathable waterproof coating of cotton fabric. Ind Eng Chem Res 58:21252–21261. https://doi.org/10.1021/acs.iecr.9b05195

    Article  CAS  Google Scholar 

  39. de Oliveira CRS, Batistella MA, Lourenço LA, de ArrudaGuelliUlsonde Souza de Souza SM, de Souza AAU (2021) Cotton fabric finishing based on phosphate/clay mineral by direct-coating technique and its influence on the thermal stability of the fibers. Prog Org Coat 150:105949. https://doi.org/10.1016/j.porgcoat.2020.105949

    Article  CAS  Google Scholar 

  40. Li YW (2014) The study of melamine modified by imidazolium based ionic liquid [BMIM]PF6 on the flame retardancy of rigid polyurethane foam. Adv Mater Res 1030–1032:241–245. https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.241

    Article  Google Scholar 

  41. Liu L, Huang Z, Pan Y, Wang X, Song L, Hu Y (2018) Finishing of cotton fabrics by multi-layered coatings to improve their flame retardancy and water repellency. Cellulose 25:4791–4803. https://doi.org/10.1007/s10570-018-1866-4

    Article  CAS  Google Scholar 

  42. Mohamed KS, Padma DK (1985) Spectral studies on pyridinium hexafluorophosphate. Spectrochim Acta Part Mol Spectrosc 41:725–728. https://doi.org/10.1016/0584-8539(85)80181-1

    Article  Google Scholar 

  43. Messali M (2015) Eco-friendly synthesis of a new class of pyridinium-based ionic liquids with attractive antimicrobial activity. Molecules 20:14936–14949. https://doi.org/10.3390/molecules200814936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiao C, Wang H, Chen X, Tang G (2019) Flame retardant and thermal degradation properties of flame-retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]. J Therm Anal Calorim 135:3141–3152. https://doi.org/10.1007/s10973-018-7505-3

    Article  CAS  Google Scholar 

  45. Qiu S et al (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic -inorganic hybrid flame retardant. J Hazard Mater 344:839–848. https://doi.org/10.1016/j.jhazmat.2017.11.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaa Saoiabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, S., Boukhriss, A., Saoiabi, S. et al. Flame retardant coating of textile fabrics based on ionic liquids with self-extinguishing, high thermal stability and mechanical properties. Polym. Bull. 80, 9253–9274 (2023). https://doi.org/10.1007/s00289-022-04513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04513-7

Keywords

Navigation