Skip to main content
Log in

Tailoring structural, optical characteristics of CuO/In2O3 nanoparticles-doped organic material for photodegradation of dyes pollutants

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In present work, nanocomposites films of polyethylene oxide (PEO), copper oxide (CuO) nanoparticles and indium oxide (In2O3) nanoparticles have been fabricated for discoloration and photo-degradation of dyes pollutants with high efficiency, few cost, anti-aggregation and high dispersion of nanoparticles. The structural and optical properties of PEO/CuO–In2O3 nanocomposites have been investigated. The structural properties were included the tests: optical microscopic (OM), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The optical properties of PEO/CuO–In2O3 nanocomposites were studied in wavelength range (200–800) nm. The results of optical properties of PEO/CuO–In2O3 nanocomposites showed the absorbance of PEO increases about 57.4% at (λ = 500 nm) and the energy gap of PEO reduces about 41.1% with adding of CuO–In2O3NPs which may be considered as a key for various optical and electronic fields. The optical constant of PEO were improved by adding of CuO NPs and CuO–In2O3 NPs. The PEO/CuO–In2O3 nanocomposites have been utilized for photo-degradation of dyes pollutants. The results showed prepared nanocomposites can be used for excellent photo-degradation of dyes with high efficiency reached 91% and low concentration of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rahman MT et al (2019) Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys 13:102264

    Article  Google Scholar 

  2. Abutalib MM, Rajeh A (2020) Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J Organomet Chem 918:121309

    Article  CAS  Google Scholar 

  3. Sundaramahalingam K, Vanitha D, Nallamuthu N, Manikandan A, Muthuvinayagam M (2019) Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend elctrolyte. Phys B Condens Matter 553:120–126

    Article  CAS  Google Scholar 

  4. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBrcomplexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  5. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids 358(23):3205–3211

    Article  Google Scholar 

  6. Menazea AA (2020) One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J Market Res 9(2):2412–2422

    CAS  Google Scholar 

  7. Morsi MA, Rajeh A, Al-Muntaser AA (2019) Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos B Eng 173:106957

    Article  CAS  Google Scholar 

  8. Spěváček J, Brus J, Dybal J (2005) Solid state NMR and DFT study of polymer electrolyte poly(ethylene oxide)/LiCF3SO3. Solid State Ion 176(1–2):163–167

    Article  Google Scholar 

  9. Wang S-B, Hsiao C-H, Chang S-J, Lam K-T, Wen K-H, Young S-J, Hung S-C, Huang B-R (2011) CuO nanowire-based humidity sensor. IEEE Sens J 12(6):1884–1888

    Article  Google Scholar 

  10. Verma M, Kumar V, Katoch A (2018) Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Mater Sci Semicond Process 76:55–60

    Article  CAS  Google Scholar 

  11. Rasheed RT (2017) Theoretical structures study of indium oxide (In2O3) cluster using DFT calculations. Asian J Mater Chem 2(1):26–29

    Article  Google Scholar 

  12. Yang H, Wang S, Yang Y (2012) Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. CrystEngComm 14(3):1135–1142

    Article  CAS  Google Scholar 

  13. Zhanpeisov NU, Nakatani H, Fukumura H (2011) Theoretical DFT study of the structure and chemical activity of small indium (III) oxide clusters. Res Chem Intermed 37(6):647–658

    Article  CAS  Google Scholar 

  14. Jothibas M, Manoharan C, Johnson Jeyakumar S, Praveen P (2015) Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J Mater Sci Mater Electron 26:9600–9606. https://doi.org/10.1007/s10854-015-3623-x

    Article  CAS  Google Scholar 

  15. Henaish AMA, Abouhaswa AS (2020) Effect ofWO3 nanoparticle doping on the physical properties of PVC polymer. Bull Mater Sci. https://doi.org/10.1007/s12034-020-2109-5

    Article  Google Scholar 

  16. Mahalakshmi K, Lakshmi V, Anitha SDC, MaryJenila R (2021) Optical, structural and morphological analysis of rGO decorated CoSe2 nanocomposites. Int J Innov Sci Eng Technol 8(2):180–192

    Google Scholar 

  17. Salman S, Abduallah M, Bakr N (2014) Optical characterization of red methyl doped poly (vinyl alcohol) films. Int J Eng Technol Res 2(4):126–128

    Google Scholar 

  18. Tyagi C, Devi A (2018) Alteration of structural, optical and electrical properties of CdSe incorporated polyvinyl pyrrolidone nanocomposite for memory devices. J Adv Dielectr. https://doi.org/10.1142/S2010135X18500200

    Article  Google Scholar 

  19. Chiladova A, Wiener J, Polakova M (2011) Testing the phoyocatalytic activity of TiO2 nanoparticles with potassium permanganate solution. NanoConTM 21:9

    Google Scholar 

  20. Al-Shamari AA et al (2021) Structural and optical properties of PEO/CMC polymer blend modified with gold nanoparticles synthesized by laser ablation in water. J Market Res 12:1597–1605

    CAS  Google Scholar 

  21. Ahmad W, Jabbar B, Ahmad I, Jan BM, Stylianakis MM, Kenanakis G, Ikram R (2021) Highly sensitive humidity sensors based on polyethylene oxide/CuO/multi walled carbon nanotubes composite nanofibers. Materials 14(4):1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mansor ES, Ali H, Abdel-Karim A (2020) Efficient and reusable polyethylene oxide/polyaniline composite membrane for dye adsorption and filtration. Colloid Interface Sci Commun 39:100314

    Article  CAS  Google Scholar 

  23. Menazea AA, Ahmed MK (2020) Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though polyethylene oxide/polyvinyl pyrrolidone blend matrix. Radiat Phys Chem 174:108911

    Article  CAS  Google Scholar 

  24. Hadi A, Hashim A, Al-Khafaji Y (2020) Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Trans Electr Electron Mater 21:283–292. https://doi.org/10.1007/s42341-020-00189-w

    Article  Google Scholar 

  25. Abutalib MM, Rajeh A (2021) Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym Testing 93:107013

    Article  CAS  Google Scholar 

  26. Hashim A, H MAbduljalil, H Ahmed, (2020) Fabrication and characterization of (PVA-TiO2)1–x/SiCx nanocomposites for biomedical applications. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2019.10712.1695

    Article  Google Scholar 

  27. Abduljalil H, Hashim A, Jewad A (2011) The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur J Sci Res 63(2):231

    Google Scholar 

  28. Hashim A (2021) Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for photodegradation of organic dyes. J Inorg Organomet Polym Mater 31:2483. https://doi.org/10.1007/s10904-020-01846-6

    Article  CAS  Google Scholar 

  29. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci Mater Electron 32:2796. https://doi.org/10.1007/s10854-020-05032-9

    Article  CAS  Google Scholar 

  30. Al-Ramadhan Z, Algidsawi AJK, Hashim A (2011) The DC electrical properties of (PVC-Al2O3) composites. AIP Conf Proc 1400(1):180–185. https://doi.org/10.1063/1.3663109

    Article  CAS  Google Scholar 

  31. Hashim A, Hadi Q (2017) Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensors. Sens Lett 15(11):951. https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  32. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41(3):319–326

    Article  CAS  PubMed  Google Scholar 

  33. Rashid FL, Hashim A, Habeeb MA, Salman SR, Ahmed H (2013) Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J Eng Appl Sci 8(5):137–139

    Google Scholar 

  34. Hadi A, Hashim A (2017) Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr J Phys. https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  35. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of optical parameters of films of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-detectors. Ukr J Phys. https://doi.org/10.15407/ujpe65.6.533

    Article  Google Scholar 

  36. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  37. Phukan P, Saikia D (2013) Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int J Photoenergy. https://doi.org/10.1155/2013/728280

    Article  Google Scholar 

  38. Hashim A, Hamad ZS (2019) Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  39. Hashim A, Jassim A (2017) Novel of (PVA-ST-PbO2) Bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens Lett. https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  40. Indolia A, Gaur M (2013) Optical properties of solution grown PVDF–ZnOnanocomposite thin films. J Polym Res 20:43–50

    Article  Google Scholar 

  41. Ahmed H, Hashim A (2020) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  42. Hazim A, Abduljalil HM, Hashim A (2020) Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

    Article  Google Scholar 

  43. Alghunaim NS (2015) Spectroscopic analysis of PMMA/PVC blends containing CoCl2. Results in Phys. https://doi.org/10.1016/j.rinp.2015.11.003

    Article  Google Scholar 

  44. Hashim A (2020) Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J Inorg Organomet Polym 30:3894–3906. https://doi.org/10.1007/s10904-020-01528-3

    Article  CAS  Google Scholar 

  45. Hazim A, Hashim A, Abduljalil HM (2019) Analysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  46. Hazim A, Abduljalil HM, Hashim A (2021) Design of PMMA doped with inorganic materials as promising structures for optoelectronics applications. Trans Electr Electron Mater 22:851–868. https://doi.org/10.1007/s42341-021-00308-1

    Article  Google Scholar 

  47. Hazim A, Abduljalil HM, Hashim A (2020) First principles calculations of electronic, structural and optical properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

    Article  Google Scholar 

  48. Laila H (2020) Gaabour, analysis of spectroscopic, optical and magnetic behaviour of PVDF/PMMA blend embedded by magnetite (Fe3O4) nanoparticles. Opt Photonics J 10:197–209. https://doi.org/10.4236/opj.2020.108021

    Article  CAS  Google Scholar 

  49. Francis P, Patil S, Rajesh C et al (2013) Electronic and optical properties of agglomerated hydrogen terminated silicon nanoparticles. Eur Phys J D 67:144. https://doi.org/10.1140/epjd/e2013-40052-3

    Article  CAS  Google Scholar 

  50. Attia G, Abd El-Kader MFH (2013) Structural, optical and thermal characterization of PVA/2HEC polyblendfilms. Int J Electrochem Sci 8:5672–5687

    Article  CAS  Google Scholar 

  51. Al-Aaraji NA-H, Hashim A, Hadi A, Abduljalil HM (2022) Synthesis and enhanced optical characteristics of silicon carbide/copper oxide nanostructures doped transparent polymer for optics and photonics nanodevices. SILICON. https://doi.org/10.1007/s12633-022-01730-7

    Article  Google Scholar 

  52. Mathai CJ, Saravanan S, Anantharaman MR, Venkitachalam S, Jayalekshmi S (2002) Effect of iodine doping on the band gap of plasma polymerized aniline thin films. J Phys D Appl Phys 35(17):2206

    Article  CAS  Google Scholar 

  53. Hashim A, Hamad ZS (2020) Lower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applications. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2019.7264.1593

    Article  Google Scholar 

  54. Hadi S, Hashim A, Jewad A (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  55. Hassan D, Hashim A (2018) Structural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applications. J Bionanosci. https://doi.org/10.1166/jbns.2018.1533

    Article  Google Scholar 

  56. Ahmad A, Awatif A, Abdul-Majied Z (2007) Doppingefect on optical constants of polymethylmethacrylate (PMMA). J Eng Technol 25(4):558–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H.B., Hashim, A. & Abduljalil, H.M. Tailoring structural, optical characteristics of CuO/In2O3 nanoparticles-doped organic material for photodegradation of dyes pollutants. Polym. Bull. 80, 9059–9075 (2023). https://doi.org/10.1007/s00289-022-04502-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04502-w

Keywords

Navigation