Skip to main content

Advertisement

Log in

Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Human osteology is the biomechanics science that deals with the study of minerals and non-collagenous organic components that shield human organs and aids in the production of blood cells. A bone follows a specific regenerative pattern after injury or defect. Direct healing ability is still a substantial medical challenge in pathological or nonunion conditions. Such bone defects often necessitate a choice of biomaterial matrix (polymer/ceramic/bioglasses/metallic implants) with the combinations of bioactive signaling molecules (drug molecules) in a spatiotemporal pattern. In this regard, we address the development of a drug delivery system and also outline the interactions of drug molecules with the scaffolding surface that could further trigger the regeneration process. Eventually, the review highlights the notion of drug embedded onto the three-dimensional scaffolds and the release profiles surface coated metallic implant that creates a new window for bone tissue engineering. Besides, a systematic review was performed for literature regarding the role of antibiotics and dual drug delivery strategies that would have a potential utilization of bone-related infection control.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jakob F, Ebert R, Rudert M, Nöth U, Walles H, Docheva D, Schieker M, Meinel L, Groll J (2012) In situ guided tissue regeneration in musculoskeletal diseases and aging. Cell Tissue Res 347(3):725–735

    Article  CAS  PubMed  Google Scholar 

  2. Cirstoiu C, Cretu B, Serban B, Panti Z, Nica M (2019) Current review of surgical management options for extremity bone sarcomas. EFORT Open Rev 4(5):174–182. https://doi.org/10.1302/2058-5241.4.180048

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dorozhkin SV (2013) A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng, C 33(6):3085–3110. https://doi.org/10.1016/j.msec.2013.04.002

    Article  CAS  Google Scholar 

  4. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9(1):1–10. https://doi.org/10.1186/1741-7015-9-66

    Article  Google Scholar 

  5. Matassi F, Nistri L, Paez DC, Innocenti M (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8(1):21

    PubMed  PubMed Central  Google Scholar 

  6. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1(1):164–209. https://doi.org/10.1007/s13167-010-0001-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghosh PK, Boruah N, Sharma HK (2018) Brain and bone delivery of drugs: a review on various techniques of drug delivery. Egypt Pharm J 17(3):141. https://doi.org/10.4103/epj.epj_21_18

    Article  Google Scholar 

  8. Lee PI (2011) Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Int J Pharm 418(1):18–27. https://doi.org/10.1016/j.ijpharm.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  9. Maudens P, Jordan O, Allémann E (2018) Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discovery Today 23(10):1761–1775. https://doi.org/10.1016/j.drudis.2018.05.023

    Article  CAS  PubMed  Google Scholar 

  10. Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34(8):1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Xu J, Dai B, Wang X, Guo Q, Qin L (2020) Targeting autophagy in osteoporosis: from pathophysiology to potential therapy. Ageing Res Rev 62:101098. https://doi.org/10.1016/j.arr.2020.101098

    Article  CAS  PubMed  Google Scholar 

  12. Pereira-Silva M, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A (2020) Nanomedicine in osteosarcoma therapy: micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 148:88–106. https://doi.org/10.1016/j.ejpb.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  13. Calder AD, Foley P (2018) Skeletal dysplasias: an overview. Paediatr Child Health 28(2):84–92. https://doi.org/10.1016/j.paed.2017.10.001

    Article  Google Scholar 

  14. Glassman SD, Dimar JR III, Burkus K, Hardacker JW, Pryor PW, Boden SD, Carreon LY (2007) The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers. Spine 32(15):1693–1698. https://doi.org/10.1097/BRS.0b013e318074c366

    Article  PubMed  Google Scholar 

  15. Koh JT, Zhao Z, Wang Z, Lewis IS, Krebsbach PH, Franceschi RT (2008) Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dental Res 87(9):845–849. https://doi.org/10.1177/154405910808700906

    Article  CAS  Google Scholar 

  16. Hirata K, Tsukazaki T, Kadowaki A, Furukawa K, Shibata Y, Moriishi T, Okubo Y, Bessho K, Komori T, Mizuno A, Yamaguchi A (2003) Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone 32(5):502–512. https://doi.org/10.1016/S8756-3282(03)00054-1

    Article  CAS  PubMed  Google Scholar 

  17. Kawaguchi H, Oka H, Jingushi S, Izumi T, Fukunaga M, Sato K, Matsushita T, Nakamura K, TESK Group (2010) A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res 25(12):2735–2743. https://doi.org/10.1002/jbmr.146

    Article  CAS  PubMed  Google Scholar 

  18. Dang M, Saunders L, Niu X, Fan Y, Ma PX (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Res 6(1):1–12. https://doi.org/10.1038/s41413-018-0025-8

    Article  CAS  Google Scholar 

  19. Basu S, Pacelli S, Paul A (2020) Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 105:159–169. https://doi.org/10.1016/j.actbio.2020.01.021

    Article  CAS  PubMed  Google Scholar 

  20. Yong SB, Chung JY, Kim SS, Choi HS, Kim YH (2020) CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells. Biomaterials 230:119651. https://doi.org/10.1016/j.biomaterials.2019.119651

    Article  CAS  PubMed  Google Scholar 

  21. Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104(3):872–905. https://doi.org/10.1002/jps.24298

    Article  CAS  PubMed  Google Scholar 

  22. He W, Kapate N, Shields CW IV, Mitragotri S (2020) Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 165:15–40. https://doi.org/10.1016/j.addr.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Meng C, Su W, Liu M, Yao S, Ding Q, Yu K, Xiong Z, Chen K, Guo X, Bo L, Sun T (2021) Controlled delivery of bone morphogenic protein-2-related peptide from mineralised extracellular matrix-based scaffold induces bone regeneration. Mater Sci Eng, C 126:112182. https://doi.org/10.1016/j.msec.2021.112182

    Article  CAS  Google Scholar 

  24. Sun T, Meng C, Ding Q, Yu K, Zhang X, Zhang W, Tian W, Zhang Q, Guo X, Wu B, Xiong Z (2021) In situ bone regeneration with sequential delivery of aptamer and BMP2 from an ECM-based scaffold fabricated by cryogenic free-form extrusion. Bioact Mater 6(11):4163–4175. https://doi.org/10.1016/j.bioactmat.2021.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haider A, Haider S, Kummara MR, Kamal T, Alghyamah AA, Iftikhar FJ, Bano B, Khan N, Afridi MA, Han SS, Alrahlah A (2020) Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review. J Saudi Chem Soc 24(2):186–215. https://doi.org/10.1016/j.jscs.2020.01.002

    Article  CAS  Google Scholar 

  26. Ma D, Wang Y, Dai W (2018) Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Mater Sci Eng, C 89:456–469. https://doi.org/10.1016/j.msec.2018.04.062

    Article  CAS  Google Scholar 

  27. Pritchard EM, Valentin T, Panilaitis B, Omenetto F, Kaplan DL (2013) Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv Func Mater 23(7):854–861. https://doi.org/10.1002/adfm.201201636

    Article  CAS  Google Scholar 

  28. Rama M, Vijayalakshmi U (2021) Influence of silk fibroin on the preparation of nanofibrous scaffolds for the effective use in osteoregenerative applications. J Drug Deliv Sci Technol 61:102182. https://doi.org/10.1016/j.jddst.2020.102182

    Article  CAS  Google Scholar 

  29. Bhattacharjee P, Maiti TK, Bhattacharya D, Nandi SK (2017) Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Є-caprolactone) nanofibrous scaffold. Colloids Surf, B 156:270–281. https://doi.org/10.1016/j.colsurfb.2017.05.043

    Article  CAS  Google Scholar 

  30. Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL (2013) pH-dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater. https://doi.org/10.1002/adhm.201300034

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen M, Shao Z, Chen X (2012) Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res, Part A 100(1):203–210. https://doi.org/10.1002/jbm.a.33265

    Article  CAS  Google Scholar 

  32. Yu S, Yang W, Chen S, Chen M, Liu Y, Shao Z, Chen X (2014) Floxuridine-loaded silk fibroin nanospheres. RSC Adv. https://doi.org/10.1039/C4RA02113D

    Article  PubMed  Google Scholar 

  33. Huang T, Fan C, Zhu M, Zhu Y, Zhang W, Li L (2019) 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl Surf Sci 467:345–353. https://doi.org/10.1016/j.apsusc.2018.10.166

    Article  CAS  Google Scholar 

  34. Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H (2020) Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohyd Polym 230:115658. https://doi.org/10.1016/j.carbpol.2019.115658

    Article  CAS  Google Scholar 

  35. Anjaneyulu U, Swaroop VK, Vijayalakshmi U (2016) Preparation and characterization of novel Ag doped hydroxyapatite–Fe3O4–chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Adv 6(13):10997–11007. https://doi.org/10.1039/C5RA21479C

    Article  CAS  Google Scholar 

  36. Saber-Samandari S, Saber-Samandari S (2017) Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng, C 75:721–732. https://doi.org/10.1016/j.msec.2017.02.112

    Article  CAS  Google Scholar 

  37. Azizian S, Hadjizadeh A, Niknejad H (2018) Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohyd Polym 202:315–322. https://doi.org/10.1016/j.carbpol.2018.07.023

    Article  CAS  Google Scholar 

  38. Ge YW, Lu JW, Sun ZY, Liu ZQ, Zhou J, Ke QF, Mao YQ, Guo YP, Zhu ZA (2019) Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. Nanomed Nanotechnol Biol Med 18:336–346. https://doi.org/10.1016/j.nano.2018.10.010

    Article  CAS  Google Scholar 

  39. Malek-Khatabi A, Javar HA, Dashtimoghadam E, Ansari S, Hasani-Sadrabadi MM, Moshaverinia A (2020) In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 108:326–336. https://doi.org/10.1016/j.actbio.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  40. Gupta AA, Kheur S, Badhe RV, Raj AT, Bhonde R, Jaisinghani A, Vyas N, Patil VR, Alhazmi YA, Parveen S, Baeshen HA (2021) Assessing the potential use of chitosan scaffolds for the sustained localized delivery of vitamin D. Saudi J Biol Sci 28(4):2210–2215. https://doi.org/10.1016/j.sjbs.2021.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen KY, Yao CH (2011) Repair of bone defects with gelatin-based composites: a review. BioMedicine 1(1):29–32. https://doi.org/10.1016/j.biomed.2011.10.005

    Article  CAS  Google Scholar 

  42. Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B (2018) In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomed Nanotechnol Biol Med 14(7):2061–2073. https://doi.org/10.1016/j.nano.2018.06.007

    Article  CAS  Google Scholar 

  43. Fan C, Zhan SH, Dong ZX, Yang W, Deng WS, Liu X, Wang DA, Sun P (2020) Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Mater Sci Eng, C 108:110399. https://doi.org/10.1016/j.msec.2019.110399

    Article  CAS  Google Scholar 

  44. Govindan R, Gu FL, Karthi S, Girija EK (2020) Effect of phosphate glass reinforcement on the mechanical and biological properties of freeze-dried gelatin composite scaffolds for bone tissue engineering applications. Mater Today Commun 22:100765. https://doi.org/10.1016/j.mtcomm.2019.100765

    Article  CAS  Google Scholar 

  45. Saber MM (2019) Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf, B 183:110407. https://doi.org/10.1016/j.colsurfb.2019.110407

    Article  CAS  Google Scholar 

  46. Habraken WJ, De Jonge LT, Wolke JG, Yubao L, Mikos AG, Jansen JA (2008) Introduction of gelatin microspheres into an injectable calcium phosphate cement. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 87(3):643–655. https://doi.org/10.1002/jbm.a.31703

    Article  CAS  Google Scholar 

  47. Liu X, Zheng C, Luo X, Wang X, Jiang H (2019) Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng, C 99:1509–1522. https://doi.org/10.1016/j.msec.2019.02.070

    Article  CAS  Google Scholar 

  48. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, Farndale RW, Lisman T, Sonnenberg A, Lenting PJ, Meyaard L (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 203(6):1419–1425. https://doi.org/10.1084/jem.20052554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Liu Y, Li R, Bai H, Zhu Z, Zhu L, Zhu C, Che Z, Liu H, Wang J, Huang L (2021) Collagen-based biomaterials for bone tissue engineering. Mater Des 210:110049. https://doi.org/10.1016/j.matdes.2021.110049

    Article  CAS  Google Scholar 

  50. Fahimipour F, Bastami F, Khoshzaban A, Jahangir S, Eslaminejad MB, Khayyatan F, Safiaghdam H, Sadooghi Y, Safa M, Kashi TS, Dashtimoghadam E (2020) Critical-sized bone defects regeneration using a bone-inspired 3D bilayer collagen membrane in combination with leukocyte and platelet-rich fibrin membrane (L-PRF): an in vivo study. Tissue Cell 63:101326. https://doi.org/10.1016/j.tice.2019.101326

    Article  CAS  PubMed  Google Scholar 

  51. Martin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA, Grenho L, Fernandes MH, Gomes P, Santos CF, Bettencourt AF (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng, C 101:15–26. https://doi.org/10.1016/j.msec.2019.03.056

    Article  CAS  Google Scholar 

  52. Ozaki M, Takayama T, Yamamoto T, Ozawa Y, Nagao M, Tanabe N, Nakajima A, Suzuki N, Maeno M, Yamano S, Sato S (2017) A collagen membrane containing osteogenic protein-1 facilitates bone regeneration in a rat mandibular bone defect. Arch Oral Biol 84:19–28. https://doi.org/10.1016/j.archoralbio.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  53. Mumcuoglu D, de Miguel L, Jekhmane S, Siverino C, Nickel J, Mueller TD, van Leeuwen JP, van Osch GJ, Kluijtmans SG (2018) Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. Mater Sci Eng, C 84:271–280. https://doi.org/10.1016/j.msec.2017.11.031

    Article  CAS  Google Scholar 

  54. Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN (2011) Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32(34):8915–8926. https://doi.org/10.1016/j.biomaterials.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  55. Fernando IP, Lee W, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823. https://doi.org/10.1016/j.cej.2019.123823

    Article  CAS  Google Scholar 

  56. Yan J, Miao Y, Tan H, Zhou T, Ling Z, Chen Y, Xing X, Hu X (2016) Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng, C 63:274–284. https://doi.org/10.1016/j.msec.2016.02.071

    Article  CAS  Google Scholar 

  57. Park J, Lee SJ, Lee H, Park SA, Lee JY (2018) Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohyd Polym 196:217–224. https://doi.org/10.1016/j.carbpol.2018.05.048

    Article  CAS  Google Scholar 

  58. Bi YG, Lin ZT, Deng ST (2019) Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater Sci Eng, C 100:576–583. https://doi.org/10.1016/j.msec.2019.03.040

    Article  CAS  Google Scholar 

  59. Segredo-Morales E, García-García P, Reyes R, Pérez-Herrero E, Delgado A, Évora C (2018) Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic–alginate composite thermogel. Int J Pharm 543(1–2):160–168. https://doi.org/10.1016/j.ijpharm.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  60. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74. https://doi.org/10.1016/j.biomaterials.2010.08.074

    Article  CAS  PubMed  Google Scholar 

  61. Ahadi F, Khorshidi S, Karkhaneh A (2019) A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur Polymer J 118:265–274. https://doi.org/10.1016/j.eurpolymj.2019.06.001

    Article  CAS  Google Scholar 

  62. Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD (2008) An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int J Pharm 353(1–2):74–87. https://doi.org/10.1016/j.ijpharm.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  63. Daou CA, Bassim M (2020) Hyaluronic acid in otology: its uses, advantages and drawbacks—a review. Am J Otolaryngol 41(2):102375. https://doi.org/10.1016/j.amjoto.2019.102375

    Article  CAS  Google Scholar 

  64. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.11.050

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kim WK, Choi JH, Shin ME, Kim JW, Kim PY, Kim N, Song JE, Khang G (2019) Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel. Int J Biol Macromol 141:51–59. https://doi.org/10.1016/j.ijbiomac.2019.08.176

    Article  CAS  PubMed  Google Scholar 

  66. Dong J, Tao L, Abourehab MA, Hussain Z (2018) Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. Int J Biol Macromol 116:1268–1281. https://doi.org/10.1016/j.ijbiomac.2018.05.116

    Article  CAS  PubMed  Google Scholar 

  67. Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS (2016) Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol 86:917–928. https://doi.org/10.1016/j.ijbiomac.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  68. Ansari S, Diniz IM, Chen C, Aghaloo T, Wu BM, Shi S, Moshaverinia A (2017) Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage. J Mater Sci Mater Med 28(10):1–12. https://doi.org/10.1007/s10856-017-5974-8

    Article  CAS  Google Scholar 

  69. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  70. Mary Stella S, Vijayalakshmi U (2019) Influence of chemically modified Luffa on the preparation of nanofiber and its biological evaluation for biomedical applications. J Biomed Mater Res, Part A 107(3):610–620. https://doi.org/10.1002/jbm.a.36577

    Article  CAS  Google Scholar 

  71. Birhanu G, Tanha S, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Kiani Dehkordi B (2019) Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Technol 24(3):338–347. https://doi.org/10.1080/10837450.2018.1481429

    Article  CAS  PubMed  Google Scholar 

  72. Li X, Yi W, Jin A, Duan Y, Min S (2015) Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration. Am J Transl Res 7(8):1417

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Baek J, Chen X, Sovani S, Jin S, Grogan SP, D’Lima DD (2015) Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res 33(4):572–583. https://doi.org/10.1002/jor.22802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hakim SL, Kusumasari FC, Budianto E (2020) Optimization of biodegradable PLA/PCL microspheres preparation as controlled drug delivery carrier. Mater Today Proc 22:306–313. https://doi.org/10.1016/j.matpr.2019.08.156

    Article  CAS  Google Scholar 

  75. Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polymer J 99:445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045

    Article  CAS  Google Scholar 

  76. Abrisham M, Noroozi M, Panahi-Sarmad M, Arjmand M, Goodarzi V, Shakeri Y, Golbaten-Mofrad H, Dehghan P, Sahzabi AS, Sadri M, Uzun L (2020) The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art review. Eur Polymer J 131:109701. https://doi.org/10.1016/j.eurpolymj.2020.109701

    Article  CAS  Google Scholar 

  77. Fereshteh Z, Nooeaid P, Fathi M, Bagri A, Boccaccini AR (2015) Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application. Data Brief 4:524–528. https://doi.org/10.1016/j.dib.2015.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  78. McNeil SE, Griffiths HR, Perrie Y (2011) Polycaprolactone fibres as a potential delivery system for collagen to support bone regeneration. Current Drug Deliv 8(4):448–455

    Article  CAS  Google Scholar 

  79. Chang SH, Lee HJ, Park S, Kim Y, Jeong B (2018) Fast degradable polycaprolactone for drug delivery. Biomacromolecules 19(6):2302–2307. https://doi.org/10.1021/acs.biomac.8b00266

    Article  CAS  PubMed  Google Scholar 

  80. Palamà IE, Arcadio V, D’Amone S, Biasiucci M, Gigli G, Cortese B (2017) Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-12824-3

    Article  CAS  Google Scholar 

  81. Li Y, Bai Y, Pan J, Wang H, Li H, Xu X, Fu X, Shi R, Luo Z, Li Y, Li Q (2019) A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J Mater Chem B 7(4):619–629. https://doi.org/10.1039/C8TB02756K

    Article  CAS  PubMed  Google Scholar 

  82. Wang JZ, You ML, Ding ZQ, Ye WB (2019) A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng, C 97:1021–1035. https://doi.org/10.1016/j.msec.2019.01.057

    Article  CAS  Google Scholar 

  83. Moradkhannejhad L, Abdouss M, Nikfarjam N, Shahriari MH, Heidary V (2020) The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. J Drug Deliv Sci Technol 56:101554. https://doi.org/10.1016/j.jddst.2020.101554

    Article  CAS  Google Scholar 

  84. Rezaei B, Lotfi-Forushani H, Ensafi AA (2014) Modified Au nanoparticles-imprinted sol–gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater Sci Eng, C 37:113–119. https://doi.org/10.1016/j.msec.2013.12.036

    Article  CAS  Google Scholar 

  85. Kavas A, Keskin D, Altunbaş K, Tezcaner A (2016) Raloxifene-/raloxifene-poly (ethylene glycol) conjugate-loaded microspheres: a novel strategy for drug delivery to bone forming cells. Int J Pharm 510(1):168–183. https://doi.org/10.1016/j.ijpharm.2016.06.053

    Article  CAS  PubMed  Google Scholar 

  86. Leite DM, Sousa DM, Lamghari M, Pêgo AP (2020) Exploring poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles as carriers of hydrophobic drugs to modulate osteoblastic activity. J Pharm Sci 109(4):1594–1604. https://doi.org/10.1016/j.xphs.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  87. Deng H, Dong A, Song J, Chen X (2019) Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J Control Release 297:60–70. https://doi.org/10.1016/j.jconrel.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  88. Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH (2020) A comprehensive review on polymeric hydrogel and its composite: matrices of choice for bone and cartilage tissue engineering. J Ind Eng Chem 89:58–82. https://doi.org/10.1016/j.jiec.2020.06.017

    Article  CAS  Google Scholar 

  89. Jensen BE, Dávila I, Zelikin AN (2016) Poly (vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120(26):5916–5926. https://doi.org/10.1021/acs.jpcb.6b01381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wan T, Stylios GK, Giannoudi M, Giannoudis PV (2015) Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA (PEG) for the controlled release of biopharmaceuticals for bone infections. Injury 46:S39–S43. https://doi.org/10.1016/S0020-1383(15)30053-X

    Article  PubMed  Google Scholar 

  91. Ullah K, Sohail M, Murtaza G, Khan SA (2019) Natural and synthetic materials based cmch/PVA hydrogels for oxaliplatin delivery: fabrication, characterization, in-vitro and in-vivo safety profiling. Int J Biol Macromol 122:538–548. https://doi.org/10.1016/j.ijbiomac.2018.10.203

    Article  CAS  PubMed  Google Scholar 

  92. Hou Y, Xie W, Achazi K, Cuellar-Camacho JL, Melzig MF, Chen W, Haag R (2018) Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater 77:28–37. https://doi.org/10.1016/j.actbio.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  93. Xavier SA, Vijayalakshmi U (2018) Electrochemically grown functionalized-Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids Surf, B 171:186–196. https://doi.org/10.1016/j.colsurfb.2018.06.058

    Article  CAS  Google Scholar 

  94. Salimi E (2020) Functionally graded calcium phosphate bioceramics: an overview of preparation and properties. Ceram Int 46(12):19664–19668. https://doi.org/10.1016/j.ceramint.2020.05.077

    Article  CAS  Google Scholar 

  95. Yi Z, Wang K, Tian J, Shu Y, Yang J, Xiao W, Li B, Liao X (2016) Hierarchical porous hydroxyapatite fibers with a hollow structure as drug delivery carriers. Ceram Int 42(16):19079–19085. https://doi.org/10.1016/j.ceramint.2016.09.067

    Article  CAS  Google Scholar 

  96. Priyadarshini B, Vijayalakshmi U (2018) Development of cerium and silicon co-doped hydroxyapatite nanopowder and its in vitro biological studies for bone regeneration applications. Adv Powder Technol 29(11):2792–2803. https://doi.org/10.1016/j.apt.2018.07.028

    Article  CAS  Google Scholar 

  97. Mondal S, Hoang G, Manivasagan P, Kim H, Oh J (2019) Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications. Ceram Int 45(14):17081–17093. https://doi.org/10.1016/j.ceramint.2019.05.260

    Article  CAS  Google Scholar 

  98. Mohan N, Palangadan R, Fernandez FB, Varma H (2018) Preparation of hydroxyapatite porous scaffold from a ‘coral-like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Mater Sci Eng, C 92:329–337. https://doi.org/10.1016/j.msec.2018.06.064

    Article  CAS  Google Scholar 

  99. Zhao Q, Zhang D, Sun R, Shang S, Wang H, Yang Y, Wang L, Liu X, Sun T, Chen K (2019) Adsorption behavior of drugs on hydroxyapatite with different morphologies: a combined experimental and molecular dynamics simulation study. Ceram Int 45(15):19522–19527. https://doi.org/10.1016/j.ceramint.2019.06.068

    Article  CAS  Google Scholar 

  100. Prasad SR, Jayakrishnan A, Kumar TS (2019) Hydroxyapatite-poly (vinyl alcohol) core-shell nanoparticles for dual delivery of methotrexate and gemcitabine for bone cancer treatment. J Drug Deliv Sci Technol 51:629–638. https://doi.org/10.1016/j.jddst.2019.03.041

    Article  CAS  Google Scholar 

  101. Rahmanian M, Dehghan MM, Eini L, Naghib SM, Gholami H, Mohajeri SF, Mamaghani KR, Majidzadeh-A K (2019) Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: in vitro and in vivo studies. J Taiwan Inst Chem Eng 101:214–220. https://doi.org/10.1016/j.jtice.2019.04.028

    Article  CAS  Google Scholar 

  102. Bastami F, Paknejad Z, Jafari M, Salehi M, Rad MR, Khojasteh A (2017) Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: implication for bone tissue engineering. Mater Sci Eng, C 72:481–491. https://doi.org/10.1016/j.msec.2016.10.084

    Article  CAS  Google Scholar 

  103. Ito N, Kamitakahara M, Ioku K (2014) Preparation and evaluation of spherical porous granules of octacalcium phosphate/hydroxyapatite as drug carriers in bone cancer treatment. Mater Lett 120:94–96. https://doi.org/10.1016/j.matlet.2014.01.040

    Article  CAS  Google Scholar 

  104. Lee GS, Park JH, Shin US, Kim HW (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7(8):3178–3186. https://doi.org/10.1016/j.actbio.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  105. Seong YJ, Song EH, Park C, Lee H, Kang IG, Kim HE, Jeong SH (2020) Porous calcium phosphate–collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater Sci Eng, C 109:110480. https://doi.org/10.1016/j.msec.2019.110480

    Article  CAS  Google Scholar 

  106. Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glasses. https://doi.org/10.1515/bglass-2015-0001

    Article  Google Scholar 

  107. Vijayalakshmi U, Rajeswari S (2012) Influence of process parameters on the sol–gel synthesis of nano hydroxyapatite using various phosphorus precursors. J Sol-Gel Sci Technol 63(1):45–55. https://doi.org/10.1007/s10971-012-2762-2

    Article  CAS  Google Scholar 

  108. Ezazi NZ, Shahbazi MA, Shatalin YV, Nadal E, Mäkilä E, Salonen J, Kemell M, Correia A, Hirvonen J, Santos HA (2018) Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. Int J Pharm 536(1):241–250. https://doi.org/10.1016/j.ijpharm.2017.11.065

    Article  CAS  Google Scholar 

  109. Boccardi E, Philippart A, Juhasz-Bortuzzo JA, Beltrán AM, Novajra G, Vitale-Brovarone C, Spiecker E, Boccaccini AR (2015) Uniform surface modification of 3D Bioglass®-based scaffolds with mesoporous silica particles (MCM-41) for enhancing drug delivery capability. Front Bioeng Biotechnol 3:177. https://doi.org/10.3389/fbioe.2015.00177

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heikkilä T, Santos HA, Kumar N, Murzin DY, Salonen J, Laaksonen T, Peltonen L, Hirvonen J, Lehto VP (2010) Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. Eur J Pharm Biopharm 74(3):483–494. https://doi.org/10.1016/j.ejpb.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  111. Wang Y, Pan H, Chen X (2019) The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Front Chem 7:283. https://doi.org/10.3389/fchem.2019.00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee JH, Mandakhbayar N, El-Fiqi A, Kim HW (2017) Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater 60:93–108. https://doi.org/10.1016/j.actbio.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  113. Li W, Ding Y, Rai R, Roether JA, Schubert DW, Boccaccini AR (2014) Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng, C 41:320–328. https://doi.org/10.1016/j.msec.2014.04.052

    Article  CAS  Google Scholar 

  114. Xu H, Ge YW, Lu JW, Ke QF, Liu ZQ, Zhu ZA, Guo YP (2018) Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem Eng J 354:285–294. https://doi.org/10.1016/j.cej.2018.08.022

    Article  CAS  Google Scholar 

  115. Yang C, Wu H, Li G (2020) Bioactive ophiopogonin release form bioglass-collagen-phosphatidylserine scaffolds to enhance bone repair in vitro. Mater Lett 265:127436. https://doi.org/10.1016/j.matlet.2020.127436

    Article  CAS  Google Scholar 

  116. Baino F, Fiorilli S, Mortera R, Onida B, Saino E, Visai L, Verné E, Vitale-Brovarone C (2012) Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release. J Appl Biomater Funct Mater 10(1):12–21. https://doi.org/10.5301/JABFM.2012.9270

    Article  CAS  PubMed  Google Scholar 

  117. Bagherifard S (2017) Mediating bone regeneration by means of drug eluting implants: from passive to smart strategies. Mater Sci Eng, C 71:1241–1252. https://doi.org/10.1016/j.msec.2016.11.011

    Article  CAS  Google Scholar 

  118. Ren N, Li J, Qiu J, Yan M, Liu H, Ji D, Huang J, Yu J, Liu H (2017) Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants. Dent Mater 33(5):525–535. https://doi.org/10.1016/j.dental.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  119. Ran J, Zeng H, Cai J, Jiang P, Yan P, Zheng L, Bai Y, Shen X, Shi B, Tong H (2018) Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: an innovative application of metal organic frameworks in bone implants. Chem Eng J 333:20–33. https://doi.org/10.1016/j.cej.2017.09.145

    Article  CAS  Google Scholar 

  120. Jang CH, Lee H, Kim M, Kim GH (2018) Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J Ind Eng Chem 63:230–236. https://doi.org/10.1016/j.jiec.2018.02.019

    Article  CAS  Google Scholar 

  121. Li G, Zhang L, Wang L, Yuan G, Dai K, Pei J, Hao Y (2018) Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomater 65:486–500. https://doi.org/10.1016/j.actbio.2017.10.033

    Article  CAS  PubMed  Google Scholar 

  122. Kiran AS, Kizhakeyil A, Ramalingam R, Verma NK, Lakshminarayanan R, Kumar TS, Doble M, Ramakrishna S (2019) Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceram Int 45(15):18710–18720. https://doi.org/10.1016/j.ceramint.2019.06.097

    Article  CAS  Google Scholar 

  123. Chen M, Huang L, Shen X, Li M, Luo Z, Cai K, Hu Y (2020) Construction of multilayered molecular reservoirs on a titanium alloy implant for combinational drug delivery to promote osseointegration in osteoporotic conditions. Acta Biomater 105:304–318. https://doi.org/10.1016/j.actbio.2020.01.029

    Article  CAS  PubMed  Google Scholar 

  124. Etxabide A, Long J, Guerrero P, de la Caba K, Seyfoddin A (2019) 3D printed lactose-crosslinked gelatin scaffolds as a drug delivery system for dexamethasone. Eur Polymer J 114:90–97. https://doi.org/10.1016/j.eurpolymj.2019.02.019

    Article  CAS  Google Scholar 

  125. Kondiah PJ, Kondiah PP, Choonara YE, Marimuthu T, Pillay V (2020) A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics 12(2):166. https://doi.org/10.3390/pharmaceutics12020166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu W, Xu C, Ma BP, Zheng ZB, Li YL, Ma Q, Wu GL, Weng XS (2016) Three-dimensional printed scaffolds with gelatin and platelets enhance in vitro preosteoblast growth behavior and the sustained-release effect of growth factors. Chin Med J 129(21):2576–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sala R, Regondi S, Graziosi S, Pugliese R (2022) Insights into the printing parameters and characterization of thermoplastic polyurethane soft triply periodic minimal surface and honeycomb lattices for broadening material extrusion applicability. Addit Manuf 58:102976. https://doi.org/10.1016/j.addma.2022.102976

    Article  CAS  Google Scholar 

  128. Croes M, van der Wal BC, Vogely HC (2019) Impact of bacterial infections on osteogenesis: evidence from in vivo studies. J Orthop Res® 37(10):2067–2076. https://doi.org/10.1002/jor.24422

    Article  PubMed  Google Scholar 

  129. Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2020) Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections. J Orthop Transl 21:136–145. https://doi.org/10.1016/j.jot.2019.07.006

    Article  Google Scholar 

  130. Puga AM, Rey-Rico A, Magariños B, Alvarez-Lorenzo C, Concheiro A (2012) Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 8(4):1507–1518. https://doi.org/10.1016/j.actbio.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  131. Balmayor ER, Baran ET, Azevedo HS, Reis RL (2012) Injectable biodegradable starch/chitosan delivery system for the sustained release of gentamicin to treat bone infections. Carbohyd Polym 87(1):32–39. https://doi.org/10.1016/j.carbpol.2011.06.078

    Article  CAS  Google Scholar 

  132. Xie Z, Cui X, Zhao C, Huang W, Wang J, Zhang C (2013) Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob Agents Chemother 57(7):3293–3298. https://doi.org/10.1128/AAC.00284-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lian X, Mao K, Liu X, Wang X, Cui F (2015) In vivo osteogenesis of vancomycin loaded nanohydroxyapatite/collagen/calcium sulfate composite for treating infectious bone defect induced by chronic osteomyelitis. J Nanomater. https://doi.org/10.1155/2015/261492

    Article  Google Scholar 

  134. Rumian Ł, Tiainen H, Cibor U, Krok-Borkowicz M, Brzychczy-Włoch M, Haugen HJ, Pamuła E (2016) Ceramic scaffolds enriched with gentamicin loaded poly (lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater Sci Eng, C 69:856–864. https://doi.org/10.1016/j.msec.2016.07.065

    Article  CAS  Google Scholar 

  135. Mantripragada VP, Jayasuriya AC (2016) Bone regeneration using injectable BMP-7 loaded chitosan microparticles in rat femoral defect. Mater Sci Eng, C 63:596–608. https://doi.org/10.1016/j.msec.2016.02.080

    Article  CAS  Google Scholar 

  136. Li H, Jiang F, Ye S, Wu Y, Zhu K, Wang D (2016) Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Mater Sci Eng, C 62:779–786. https://doi.org/10.1016/j.msec.2016.02.012

    Article  CAS  Google Scholar 

  137. Butini ME, Cabric S, Trampuz A, Di Luca M (2018) In vitro anti-biofilm activity of a biphasic gentamicin-loaded calcium sulfate/hydroxyapatite bone graft substitute. Colloids Surf, B 161:252–260. https://doi.org/10.1016/j.colsurfb.2017.10.050

    Article  CAS  Google Scholar 

  138. Dorati R, De Trizio A, Genta I, Merelli A, Modena T, Conti B (2017) Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: formulation study and biologic evaluation. J Pharm Sci 106(6):1596–1607. https://doi.org/10.1016/j.xphs.2017.02.031

    Article  CAS  PubMed  Google Scholar 

  139. Pierchala MK, Makaremi M, Tan HL, Pushpamalar J, Muniyandy S, Solouk A, Lee SM, Pasbakhsh P (2018) Nanotubes in nanofibers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Appl Clay Sci 160:95–105. https://doi.org/10.1016/j.clay.2017.12.016

    Article  CAS  Google Scholar 

  140. Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Gonçalves L, Almeida AJ, Jordão L, Ribeiro IA, Ramstedt M, Gomes P, Bettencourt A (2017) Levofloxacin-loaded bone cement delivery system: highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 532(1):241–248. https://doi.org/10.1016/j.ijpharm.2017.08.089

    Article  CAS  PubMed  Google Scholar 

  141. Channasanon S, Udomkusonsri P, Chantaweroad S, Tesavibul P, Tanodekaew S (2017) Gentamicin released from porous scaffolds fabricated by stereolithography. J Healthc Eng. https://doi.org/10.1155/2017/9547896

    Article  PubMed  PubMed Central  Google Scholar 

  142. Budiatin AS, Gani MA, Ardianto C, Raharjanti AM, Septiani I, Putri NP, Khotib J (2021) Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. https://doi.org/10.1155/2021/5560891

    Article  PubMed  PubMed Central  Google Scholar 

  143. Du L, Yang S, Li W, Li H, Feng S, Zeng R, Yu B, Xiao L, Nie HY, Tu M (2017) Scaffold composed of porous vancomycin-loaded poly (lactide-co-glycolide) microspheres: a controlled-release drug delivery system with shape-memory effect. Mater Sci Eng, C 78:1172–1178. https://doi.org/10.1016/j.msec.2017.04.099

    Article  CAS  Google Scholar 

  144. Weng W, Nie W, Zhou Q, Zhou X, Cao L, Ji F, Cui J, He C, Su J (2017) Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Adv 7(5):2753–2765. https://doi.org/10.1039/C6RA26062D

    Article  CAS  Google Scholar 

  145. Laghmouche N, Compain F, Jannot AS, Guigui P, Mainardi JL, Lonjon G, Bouyer B, Fernandez-Gerlinger MP (2017) Successful treatment of Pseudomonas aeruginosa osteomyelitis with antibiotic monotherapy of limited duration. J Infect 75(3):198–206. https://doi.org/10.1016/j.jinf.2017.06.006

    Article  PubMed  Google Scholar 

  146. Laghmouche N, Compain F, Jannot AS, Guigui P, Mainardi JL, Lonjon G, Bouyer B, Fernandez-Gerlinger MP (2017) Successful treatment of Pseudomonas aeruginosa osteomyelitis with antibiotic monotherapy of limited duration. J Infect 6(5):740–752. https://doi.org/10.1016/j.jinf.2017.06.006

    Article  Google Scholar 

  147. Prasanna AP, Venkatasubbu GD (2018) Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections. Prog Biomater 7(4):289–296. https://doi.org/10.1007/s40204-018-0103-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sreeja S, Muraleedharan CV, Varma PH, Sailaja GS (2020) Surface-transformed osteoinductive polyethylene terephthalate scaffold as a dual system for bone tissue regeneration with localized antibiotic delivery. Mater Sci Eng, C 109:110491. https://doi.org/10.1016/j.msec.2019.110491

    Article  CAS  Google Scholar 

  149. Bakhsheshi-Rad HR, Chen XB, Ismail AF, Aziz M, Hamzah E, Najafinezhad A (2019) A new multifunctional monticellite-ciprofloxacin scaffold: preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys 222:118–131. https://doi.org/10.1016/j.matchemphys.2018.09.054

    Article  CAS  Google Scholar 

  150. Wang Q, Chen C, Liu W, He X, Zhou N, Zhang D, Gu H, Li J, Jiang J, Huang W (2017) Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep 7(1):1–13. https://doi.org/10.1038/srep41808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu X, Chen R, Lv J, Xu W, Chen H, Ma Z, Huang S, Li S, Liu H, Hu J, Nie L (2019) High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent. Acta Biomater 99:363–372

    Article  CAS  PubMed  Google Scholar 

  152. Memar MY, Adibkia K, Farajnia S, Kafil HS, Dizaj SM, Ghotaslou R (2019) Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. J Drug Deliv Sci Technol 54:101307. https://doi.org/10.1016/j.jddst.2019.101307

    Article  CAS  Google Scholar 

  153. Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE (2020) Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 10(3):706–720. https://doi.org/10.1007/s13346-020-00736-1

    Article  CAS  PubMed  Google Scholar 

  154. Ferreira-Ermita DA, Valente FL, Carlo-Reis EC, Araújo FR, Ribeiro IM, Cintra CC, Borges AP (2020) Characterization and in vivo biocompatibility analysis of synthetic hydroxyapatite compounds associated with magnetite nanoparticles for a drug delivery system in osteomyelitis treatment. Results Mater 5:100063. https://doi.org/10.1016/j.rinma.2020.100063

    Article  Google Scholar 

  155. Wang P, Yuan Y, Xu K, Zhong H, Yang Y, Jin S, Yang K, Qi X (2021) Biological applications of copper-containing materials. Bioact Mater 6(4):916–927. https://doi.org/10.1016/j.bioactmat.2020.09.017

    Article  CAS  PubMed  Google Scholar 

  156. Ak G, Bozkaya ÜF, Yılmaz H, Turgut ÖS, Bilgin I, Tomruk C, Uyanıkgil Y, Şanlıer ŞH (2021) An intravenous application of magnetic nanoparticles for osteomyelitis treatment: an efficient alternative. Int J Pharm 592:119999. https://doi.org/10.1016/j.ijpharm.2020.119999

    Article  CAS  PubMed  Google Scholar 

  157. Padrão T, Coelho CC, Costa P, Alegrete N, Monteiro FJ, Sousa SR (2021) Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: a novel strategy for osteomyelitis treatment. Mater Sci Eng C 119:111329. https://doi.org/10.1016/j.msec.2020.111329

    Article  CAS  Google Scholar 

  158. Zhang S, Chen G, Wang M, Lin B, Gao X, Hu J, Chen B, Zhang C (2022) Osteogenic and anti-inflammatory potential of oligochitosan nanoparticles in treating osteomyelitis. Biomater Adv 135:112681. https://doi.org/10.1016/j.msec.2022.112681

    Article  CAS  Google Scholar 

  159. Kim YH, Tabata Y (2015) Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 94:28–40. https://doi.org/10.1016/j.addr.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  160. Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H (2018) Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 279:69–78. https://doi.org/10.1016/j.jconrel.2018.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cho H, Kim J, Kim S, Jung YC, Wang Y, Kang BJ, Kim K (2020) Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release 327:284–295. https://doi.org/10.1016/j.jconrel.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  162. Udomluck N, Lee H, Hong S, Lee SH, Park H (2020) Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci 520:146311. https://doi.org/10.1016/j.apsusc.2020.146311

    Article  CAS  Google Scholar 

  163. Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park K, Lee D, Lee SH (2020) Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Control Release 328:596–607. https://doi.org/10.1016/j.jconrel.2020.09.023

    Article  CAS  PubMed  Google Scholar 

  164. Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, Tang Y, Wei Y (2021) Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater 6(1):137–145. https://doi.org/10.1016/j.bioactmat.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  165. Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H (2016) Importance of dual delivery systems for bone tissue engineering. J Control Release 225:152–169. https://doi.org/10.1016/j.jconrel.2016.01.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank VIT University, Vellore, for providing all required facilities, and also one of the authors Dr. U. Vijayalakshmi highly acknowledges DST, New Delhi, India, (EMR/2016/002562) for financial support. Another author, M. Rama thank Indian Council of Medical Research for the award of Senior Research Fellowship (45/39/2020-/BIO/BMS) for Financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Vijayalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, M., Vijayalakshmi, U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym. Bull. 80, 7341–7388 (2023). https://doi.org/10.1007/s00289-022-04442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04442-5

Keywords

Navigation