Skip to main content

Advertisement

Log in

A concise review on bio-responsive polymers in targeted drug delivery system

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bio-responsive polymers are the cornerstone of the creation of keen structures which, after getting unique stimuli like biotic indications as well as pathological irregularities, exhibit engineered biomedical functions. The creation of innovative products in precision medicine (a type of medicine that uses a person’s own gene or protein knowledge to prevent, diagnose, or treat illness) has shown considerable promise in these stimulus-receptive schemes, and in recent years, there has been a lot of research on this topic. The goal of this analysis is to summaries the introductory consciousness and recent development of advanced bio-responsive technologies like in recent years, bio-responsive polymeric nanotherapeutics have emerged as an intriguing medium for safe and effective cancer treatment to promote tumor cell uptake and cause drug delivery at the target location. However, the bio-responsive polymer-based drug delivery system may suffer from drawbacks like the polymers may have safety issues and sometimes the stimuli fail to release the drugs incorporated into the systems resulting failure of the system. So, more research is needed to explore on the behavior of different bio-responsive polymers for development of strategic drug transport arrangement. In this article, we have focused on numerous bio-approachable polymers used for development of pH, temperature, magnetic field, light, sound responsive drug delivery system.

Graphical abstract

Biological stimuli-sensitive polymeric drug delivery system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Omanathanu P, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447–451

    Google Scholar 

  2. Park JH, Ye ML, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Almeida (2008) Biomedical application of polymer-based pharmaceuticals. Biomed Eng Group XII

  4. Chen G, Roy I, Yang C, Prasad PN (2016) Nano-chemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885

    CAS  PubMed  Google Scholar 

  5. Chen Z, Wang Z, Gu Z (2019) Bioinspired and biomimetic nanomedicines. Acc Chem Res 52:1255–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Crucho CIC (2015) Stimuli-responsive polymeric nanoparticles for nanomedicine. Med Chem 10:24–38

    CAS  Google Scholar 

  7. Owen SC, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7:53–65

    CAS  Google Scholar 

  8. Kasiramar G, Komala S, Mahalakshmi M (2017) An overview on polymeric nanoparticles used in the treatment of Diabetic mellitus. Pharmatutor 5(2):40

    Google Scholar 

  9. Kellum JA (2000) Determinants of blood pH in health and disease. Crit Care 4(1):6–14. https://doi.org/10.1186/cc644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  11. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85(1):152–167. https://doi.org/10.1016/j.biomaterials.2016.01.061

    Article  CAS  PubMed  Google Scholar 

  12. Canaparo R, Foglietta F, Giuntini F, Pepa CD, Dosio F, Serpe L (2019) Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24(10):1991. https://doi.org/10.3390/molecules24101991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Min KH, Jang EY, Lee HJ, Hwang YS, Ryu JI, Moon JH, Lee SC (2019) pH-responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. J Ind Eng Chem 71:210–219

    CAS  Google Scholar 

  14. Wang S (2021) pH-responsive amphiphilic carboxylate polymers: design and potential for endosomal escape. Front Chem 9:1–8

    Google Scholar 

  15. Ofridam F, Tarhini M, Lebaz N, Gagnière E, Mangin D, Elaissari A (2021) pH-sensitive polymers: classification and some fine potential applications. Polym Adv Technol 32(4):1455–1484

    CAS  Google Scholar 

  16. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516

    CAS  Google Scholar 

  17. Suedee R, Jantarat C, Lindner W, Viernstein H, Songkro S, Srichana T (2010) Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J Control Release 142:122–131

    CAS  PubMed  Google Scholar 

  18. Moon JR, Park YH, Kim JH (2009) Synthesis and characterization of novel thermo- and pH-responsive copolymers based on amphiphilic polyaspartamides. J Appl Polym Sci 111:998–1004

    CAS  Google Scholar 

  19. Chatterjee J, Haik Y, Chen CJ (2004) pH-reversible magnetic gel with a biodegradable polymer. J Appl Polym Sci 91:3337–3341

    CAS  Google Scholar 

  20. Guo M, Yan Y, Liu XZ, Yan HS, Liu KL, Zhang HK, Cao YJ (2010) Multilayer nanoparticles with a magnetite core and a polycation inner shell as pH responsive carriers for drug delivery. Nanoscale 2:434–441

    CAS  PubMed  Google Scholar 

  21. Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of kappa-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67:644–654

    CAS  Google Scholar 

  22. Jarvinen K, Akerman S, Svarfvar B, Tarvainen T, Viinikka P, Paronen P (1998) Drug release from pH and ionic strength responsive poly (acrylic acid) grafted poly (vinylidene fluoride) membrane bags in vitro. Pharm Res 15:802–805

    CAS  PubMed  Google Scholar 

  23. Jones MC, Ranger M, Leroux JC (2003) pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjug Chem 14:774–781

    CAS  PubMed  Google Scholar 

  24. Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11:1371–1380

    CAS  PubMed  Google Scholar 

  25. Shim WS, Kim JH, Kim K, Kim YS, Park RW, Kim IS, Kwon IC, Lee DS (2007) pHand temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. Int J Pharm 331:11–18

    CAS  PubMed  Google Scholar 

  26. Dufresne MH, Le Garrec D, Sant V, Leroux JC, Ranger M (2004) Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery. Int J Pharm 277:81–90

    CAS  PubMed  Google Scholar 

  27. Heffernan MJ, Murthy N (2005) Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bio Conjug Chem 16:1340–1342

    CAS  Google Scholar 

  28. Hui H, Fan XD, Cao ZL (2005) Thermo- and pH-sensitive dendrimer derivatives with a shell of poly (N, N-dimethyl-amino-ethyl methacrylate) and study of their controlled drug release behavior. Polymer 46:9514–9522

    Google Scholar 

  29. van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NME, van Steenbergen MJ, Hennink WE (1999) Structure-activity relationships of watersoluble cationic methacrylate/methacryl-amide polymers for nonviral gene delivery. Bio Conjug Chem 10:589–597

    Google Scholar 

  30. Auguste DT, Armes SP, Brzezinska KR, Deming TJ, Kohn J, Prud’homme RK (2006) pH triggered release of protective poly (ethylene glycol)-b-polycation copolymers from liposomes. Biomaterials 27:2599–2608

    CAS  PubMed  Google Scholar 

  31. Hassan CM, Doyle FJ, Peppas NA (1997) Dynamic behaviour of glucose-responsive poly (methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30:6166–6173

    CAS  Google Scholar 

  32. Kim MS, Lee DS (2010) Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun 46:4481–4483

    CAS  Google Scholar 

  33. Chen W, Meng FH, Cheng R, Zhong ZY (2010) pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 142:40–46

    CAS  PubMed  Google Scholar 

  34. Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Govender T (2019) pH-responsive lipid–dendrimer hybrid nanoparticles: an approach to target and eliminate intracellular pathogens. Mol Pharm 16(11):4594–4609. https://doi.org/10.1021/acs.molpharmaceut.9b00713

    Article  CAS  PubMed  Google Scholar 

  35. Hassan D, Omolo CA, Fasiku VO, Mocktar C, Govender T (2020) Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. Int J Biol Macromol 147:358–398. https://doi.org/10.1016/j.ijbiomac.2020.01.019

    Article  CAS  Google Scholar 

  36. Kalhapure RS, Sikwal DR, Rambharose S, Mocktar C, Singh S, Bester L, Govender T (2017) Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomed Nanotechnol Biol Med 13(6):2067–2077. https://doi.org/10.1016/j.nano.2017.04.010

    Article  CAS  Google Scholar 

  37. Wang MZ, Fang Y, Hu DD (2001) Preparation and properties of chitosan-poly (Nisopropylacrylamide) full-IPN hydrogels. React Funct Polym 48:215–221

    CAS  Google Scholar 

  38. Liu SQ, Tong YW, Yang YY (2005) Thermally sensitive micelles self-assembled from poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(D, Llactide-co-glycolide) for controlled delivers of paclitaxel. Mol Biosyst 1:158–165

    CAS  PubMed  Google Scholar 

  39. Pichot C, Taniguchi T, Delair T, Elaissari A (2003) Functionalized thermosensitive latex particles: useful tools for diagnostics. J Disper Sci Technol 24:423–437

    CAS  Google Scholar 

  40. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multifunctional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679

    CAS  PubMed  Google Scholar 

  41. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142:108–121

    CAS  PubMed  Google Scholar 

  42. De P, Gondi SR, Sumerlin BS (2008) Folate-conjugated thermoresponsive block copolymers: highly efficient conjugation and solution self-assembly. Biomacromolecules 9:1064–1070

    CAS  PubMed  Google Scholar 

  43. Angelatos AS, Radt B, Caruso F (2005) Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 109:3071–3076

    CAS  PubMed  Google Scholar 

  44. Alvarez-Lorenzo C, Bromberg L, Concheiro A (2009) Light-sensitive intelligent drug delivery systems. Photochem Photobiol 85:848–860

    CAS  PubMed  Google Scholar 

  45. Suzuki A, Tanaka T (1990) Phase-transition in polymer gels induced by visiblelight. Nature 346:345–347

    CAS  Google Scholar 

  46. Vivero-Escoto JL, Slowing II, Wu CW, Lin VS (2009) Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 131:3462–3463

    CAS  PubMed  Google Scholar 

  47. Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132:9540–9542

    CAS  PubMed  PubMed Central  Google Scholar 

  48. You JO, Almeda D, Ye GJC, Auguste DT (2010) Review on Bio-responsive matrices in drug delivery. J Biol Eng 4:15

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    CAS  PubMed  Google Scholar 

  50. Pruitt JD, Pitt WG (2002) Sequestration and ultrasound-induced release of doxorubicin from stabilized Pluronic P105 micelles. Drug Deliv 9:253–258

    CAS  PubMed  Google Scholar 

  51. Lin HY, Thomas JL (2004) Factors affecting responsivity of uni-lamellar liposomes to 20 kHz ultrasound. Langmuir 20:6100–6106

    CAS  PubMed  Google Scholar 

  52. Chang B, Chen D, Wang Y, Chen Y, Jiao Y, Sha X, Yang W (2013) Bio-responsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem Mater 25:574–585

    CAS  Google Scholar 

  53. Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21):12273–12286. https://doi.org/10.1039/c4nr04249b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64(11):967–978. https://doi.org/10.1016/j.addr.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  55. Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T (2020) Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents—an in-depth review of the last two decades. WIREs Nanomed Nano-biotechnol e1664:1–38

    Google Scholar 

  56. Yua J, Zhanga Y, Yana J, Kahkoskad AR, Gu Z (2018) Advances in bio-responsive closed-loop drug delivery systems. Int J Pharm 544:350–357

    Google Scholar 

  57. Natsume T, Yoshimoto M (2014) Mechanosensitive liposomes as artificial chaperones for shear-driven acceleration of enzyme catalysed reaction. ACS Appl Mater Interfaces 6:3671–3679

    CAS  PubMed  Google Scholar 

  58. She S, Li Q, Shan B, Tong W, Gao C (2013) Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behaviour through a microcapillary. Adv Mater 25:5814–5818

    CAS  PubMed  Google Scholar 

  59. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337:738–742

    CAS  PubMed  Google Scholar 

  60. James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4(2):120–127

    Google Scholar 

  61. Sharifianjazi F, Irani M, Esmaeilkhanian A, Bazli L, Asl MS, Jang HW, Kim SY, Ramakrishna S, Shokouhimehr M, Varma RS (2021) Polymer incorporated magnetic nanoparticles: applications for magnetoresponsive targeted drug delivery. Mater Sci Eng 272:115358

    CAS  Google Scholar 

  62. Arias JL, Reddy LH, Couvreur P (2008) Magneto-responsive squalenoyl gemcitabine composite nanoparticles for cancer active targeting. Langmuir 24:7512–7519

    CAS  PubMed  Google Scholar 

  63. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, Tseng IC, Wang JJ, Yen TC, Chen PY, Wei KC (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci USA 107:15205–15210

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ (2010) Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci USA 107:8346–8351

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gomes JFPD, Rank A, Kronenberger A, Fritz J, Winterhalter M, Ramaye Y (2009) Polyelectrolyte-coated unilamellar nanometer-sized magnetic liposomes. Langmuir 25:6793–6799

    CAS  Google Scholar 

  66. Park C, Bae J, Choi Y, Park W (2021) Shear stress-triggered deformation of microparticles in a tapered microchannel. Polymers 13(1):55

    CAS  Google Scholar 

  67. Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194

    CAS  PubMed  Google Scholar 

  68. Fukino T, Yamagishi H, Aida T (2017) Redox-responsive molecular systems and materials. Adv Mater 29:1603888

    Google Scholar 

  69. Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y (2017) Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front 1:807–822

    CAS  Google Scholar 

  70. Zhang J, Jiang X, Xiang W, Xu Q, Zeng H, Zhao Y, Liu M, Wang Z, Hu X, Wang Y (2019) Bio-responsive smart polymers and biomedical applications. J Phys Mater 2:032004

    CAS  Google Scholar 

  71. Tapiero H, Mathé G, Couvreur P, Tew KD (2002) L-arginine. Biomed Pharmacother 56:439–445

    CAS  PubMed  Google Scholar 

  72. Wu QX, Lin DQ, Yao SJ (2014) Design of chitosan and its water-soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 12:6236–6253

    PubMed  PubMed Central  Google Scholar 

  73. Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8:1305–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu PS, Bajaj G, Shugg T, van Alstine WG, Yeo Y (2010) Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules 11:2352–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bajaj G, van Alstine WG, Yeo Y (2012) Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS ONE 7:1–10

    Google Scholar 

  76. Čalija B, Cekić N, Savić S, Daniels R, Marković B, Milić J (2013) pH-sensitive microparticles for oral drug delivery based on alginate/oligo-chitosan/Eudragit®L100-55 “sandwich” polyelectrolyte complex. Colloid Surf B 110:395–402

    Google Scholar 

  77. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    CAS  PubMed  Google Scholar 

  78. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M (2022) Drug release study of the chitosan-based nanoparticles. Heliyon 8(1):e08674

    CAS  PubMed  Google Scholar 

  79. Wang S, Tan M, Zhong Z, Chen M, Wang Y (2011) Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J Nanomater 2011:1–8

    Google Scholar 

  80. Martin EM, Valle D (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  81. Matthews CE, Van Holde KE, Ahern KG (1999) Biochemistry, 3rd edn. Benjamin Cummings, New York. ISBN 0-8053-3066-6

  82. Akash MSH, Rehman K (2015) Recent progress in biomedical applications of pluronic (PF127): pharmaceutical perspectives. J Control Release 209:120–138

    CAS  PubMed  Google Scholar 

  83. Hacker MC, Klouda L, Ma BB, Kretlow JD, Mikos AG (2008) Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly (N-isopropylacrylamide)-based macromers. Biomacromolecules 9:1558–1570

    CAS  PubMed  Google Scholar 

  84. Moghadam S, Larson RG (2017) Assessing the efficacy of poly (N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations. Mol Pharm 14:478–491

    CAS  PubMed  Google Scholar 

  85. Gulyuz U, Okay O (2015) Self-healing poly (N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22

    CAS  Google Scholar 

  86. Kulkarni SS, Aloorkar NH (2010) Smart polymers in drug delivery: an overview. J Pharm Res 3:100–108

    CAS  Google Scholar 

  87. Liu W, Zhang B, Lu WW, Li X, Zhu D, Yao KD, Wang Q, Zhao C, Wang CA (2004) Rapid temperature-responsive sol–gel reversible poly (N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012

    CAS  PubMed  Google Scholar 

  88. Gupta B, Arora A, Saxena S, Alam MS (2009) Preparation of chitosan-polyethylene glycol coated cotton membranes for wound dressings: preparation and characterization. Polym Adv Technol 20:58–65

    CAS  Google Scholar 

  89. Bromber L (2005) Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin Drug Deliv 2:1003–1013

    Google Scholar 

  90. Li C, Wu P, Dou Y, Li Q, Zhang J (2022) Bio responsive nanoplatforms for imaging and therapy of cardiovascular diseases. View 3(1):20200137. https://doi.org/10.1002/VIW.20200137

    Article  CAS  Google Scholar 

  91. Pandey A, Jain DS, Chakraborty S (2015) Poly lactic-co-glycolic acid (PLGA) copolymer and its pharmaceutical application. Handb Polym Pharm Technol 2:151–172. https://doi.org/10.1002/9781119041412.ch6

    Article  CAS  Google Scholar 

  92. Danhier F, Préat V (2015) Strategies to improve the EPR effect for the delivery of anti-cancer nanomedicines. Cancer Cell Microenviron 2:e808

    Google Scholar 

  93. Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C (2017) Nanoparticle-based dressing: the future of wound treatment? Trends Biotechnol 35:770–784. https://doi.org/10.1016/j.tibtech.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  94. Yoon HY, Selvan ST, Yang Y, Kim MJ, Yi DK, Kwon IC et al (2018) Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials 178:597–607. https://doi.org/10.1016/j.biomaterials.2018.03.036

    Article  CAS  PubMed  Google Scholar 

  95. Jiang JX, Chen HW, Yu C, Zhang YY, Chen MY, Tian S et al (2015) The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine 10:1863–1879. https://doi.org/10.2217/nnm.15.43

    Article  CAS  PubMed  Google Scholar 

  96. Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X et al (2016) Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 102:187–197. https://doi.org/10.1016/j.biomaterials.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  97. Lu Y et al (2019) Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Adv Sci 6:1801586

    Google Scholar 

  98. Doua Y, Lia C, Lia L, Guoa J, Zhanga J (2020) Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 327:641–666

    Google Scholar 

  99. Cheng R, Meng F, Deng C, Zhong Z (2015) Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 473:15. https://doi.org/10.1016/j.nantod.2015.09.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dipanjan Karati is thankful to Gitanjali college of Pharmacy for continuous support.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Karati.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, D. A concise review on bio-responsive polymers in targeted drug delivery system. Polym. Bull. 80, 7023–7045 (2023). https://doi.org/10.1007/s00289-022-04424-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04424-7

Keywords

Navigation