Skip to main content

Application of Stimuli-Responsive Polymers in Cancer Therapy

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 15 Accesses

Abstract

Stimuli-responsive drug delivery systems used in cancer therapy based on stimuli-responsive polymers are having advantage over conventional chemotherapeutic agents with very less side effects, high concentration at tumor site, and improved efficiency in the treatment of cancer. Cancer chemotherapy have a lot of disadvantages such as systemic toxicity, non-specificity, low concentration in tumor site, and ubiquitous biodistribution. At the time of cancer treatment, multiple changes occur in different body parts simultaneously. To mimic such changes in biological processes, stimuli-responsive polymers are required to sense and respond toward these changes in a particular manner. Stimuli-responsive polymers have property to mimic and recognize changes of biological processes for targeting the specific cancer cells. In continuation of this, stimuli-responsive polymers act at site either simultaneously or in a step-by-step manner to initiate the drug from its very first step to reach the cancer cell. In last decades, polymers are extremely use in target specific drug delivery to inactivate or kill cancerous cells. In continuation of this, a number of endogenous stimuli-responsive polymers (redox-, pH-, enzyme-responsive polymers) and exogenous stimuli-responsive polymers (temperature, light) proved helpful in drug delivery. The present chapter depicts about the stimuli-responsive polymers as well as multi-responsive polymers and their significant role with respect to drug delivery system in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • An FF, Zhang XH (2017) Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7:3667–3689

    CAS  Google Scholar 

  • Bersani S, Vila-Caballer M, Brazzale C, Barattin M, Salmaso S (2014) pH sensitivestearoyl-PEG- poly(methacryloylsulfadimethoxine) decorated liposomes for the delivery of gemcitabine to cancer cells. Eur J Pharm Biopharm 88(3):670–682

    CAS  Google Scholar 

  • Cai Z, Zhang D, Lin X et al (2017) Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy. Nanotechnology 28(42):425102

    Google Scholar 

  • Chen W, Du J (2013) Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci Rep 3:2162–2170

    Google Scholar 

  • Chiang WH, Ho VT, Chen HH et al (2013) Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimulimediated MR imaging and multiple cancer therapeutics. Langmuir 29:6434–6443

    CAS  Google Scholar 

  • Gan Q, Zhu J, Yuan Y, Liu C (2016) pH-responsive Fe3O4 nanopartilces-capped mesoporous silica supports for protein delivery. J Nanosci Nanotechnol 16:5470–5479

    CAS  Google Scholar 

  • Gao ZG, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 102:203–222

    CAS  Google Scholar 

  • Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7(6):1913–1920

    CAS  Google Scholar 

  • Glover AL, Bennett JB, Pritchett JS et al (2013) Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy. IEEE Trans Magn 49:231–235

    Google Scholar 

  • Gu X, Qiu M, Sun H, Zhang J, Cheng L, Deng C, Zhong Z (2018) Polytyrosinenanoparticlesenableultra-highloadingofdoxorubicinandrapidenzyme-responsivedrugrelease. Biomater Sci 6:1526–1534

    CAS  Google Scholar 

  • Guan X, Chen Y, Wu X, Li P, Liu Y (2019) Enzyme-responsive sulfatocyclodextrin/prodrug supramolecular assembly for controlled release of anti-cancer drug chlorambucil. Chem Commun 55(7):953–956

    CAS  Google Scholar 

  • Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR (2019) Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 92:1–18

    CAS  Google Scholar 

  • Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21):12273–12286

    CAS  Google Scholar 

  • Hu Y, Darcos V, Monge S, Li S (2015) Thermo-responsive drug release from selfassembled micelles of brush-like PLA/PEG analogues block copolymers. Int J Pharm 491(1–2):152–161

    CAS  Google Scholar 

  • Isaacson KJ, Jensen MM, Subrahmanyam NB, Ghandehari H (2017) Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. JContRelease 259:62–75

    CAS  Google Scholar 

  • James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4:120–127

    Google Scholar 

  • Jiang J, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291

    CAS  Google Scholar 

  • Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H et al (2016a) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501

    CAS  Google Scholar 

  • Karimi M, SahandiZangabad P, Ghasemi A, Amiri M et al (2016b) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mate Interfac 8(33):21107–21133

    CAS  Google Scholar 

  • Kheirolomoom A, Mahakian LM, Lai CY et al (2010) Copperdoxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm 7:1948–1958

    CAS  Google Scholar 

  • Ko NR, Oh JK (2014) Glutathione-triggered disassembly of dual disulphide located degradable nanocarriers of polylactide-based block copolymers for rapid drug release. Biomacromolecules 15:3180–3189

    CAS  Google Scholar 

  • Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide–iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5:199–212

    CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    CAS  Google Scholar 

  • Miatmoko A, Kawano K, Yoda H, Yonemochi E, Hattori Y (2017) Tumor delivery of liposomal doxorubicin prepared with poly-L-glutamic acid as a drug trapping agent. J Liposome Res 27(2):99–107

    CAS  Google Scholar 

  • Peng ZH, Kopeček J (2015) Enhancing accumulation and penetration of HPMA copolymer–doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J Am Chem Soc 137(21):6726–6729

    CAS  Google Scholar 

  • Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Google Scholar 

  • Qiao Y, Wan J, Zhou L et al (2018) Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomed Nanobiotechnol:e1527. https://doi.org/10.1002/wnan.1527

  • Rao NV, Ko H, Lee J, Park JH (2018) Recent Progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol 6:110

    Google Scholar 

  • Rapoport N, Pitt WG, Sun H, Nelson JL (2003) Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release 91:85–95

    CAS  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    CAS  Google Scholar 

  • Ruan SB, Hu C, Tang X, Cun XL, Xiao W, Shi KR et al (2016) Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 10:10086–10098. https://doi.org/10.1021/acsnano.6b05070

    Article  CAS  Google Scholar 

  • Saldívar-Ramírez MMG, Sánchez-Torres CG, Cortés-Hernández DA, Escobedo-Bocardo JC, Almanza-Robles JM, Larson A, Acuña-Gutiérrez IO (2014) Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J Mat Sci Mat Med 25:2229–2236

    Google Scholar 

  • Schroeder A, Honen R, Turjeman K et al (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137:63–68

    CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67:7–30

    Google Scholar 

  • Stride EP, Coussios CC (2010) Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng H224:171–191

    Google Scholar 

  • Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y (2017) Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. WIREs Nanomed Nanobiotechnol 10:e1476

    Google Scholar 

  • Tu Y, Peng F, White PB et al (2017) Redox-sensitive stomatocytenanomotors: destruction and drug release in the presence of glutathione. AngewChemInt Ed 56:7620–7624

    CAS  Google Scholar 

  • Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    CAS  Google Scholar 

  • Wan CP, Jackson JK, Pirmoradi FN et al (2012) Increased accumulation and retention of micellar paclitaxel in drug-sensitive and P-glycoprotein-expressing cell lines following ultrasound exposure. Ultrasound Med Biol 38:736–744

    Google Scholar 

  • Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G (2018) Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: a review. Int J Pharm 535(1):253–260

    CAS  Google Scholar 

  • Wang ZH, Wang YH, Jia XQ, Han QJ, Qian YX, Li Q et al (2019) MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy. Theranostics 9:1728–1740

    CAS  Google Scholar 

  • Wei M, Gao Y, Li X et al (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127

    CAS  Google Scholar 

  • Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J FunctBiomater 10:34–53

    CAS  Google Scholar 

  • Yao C, Wu M, Zhang C, Lin X, Wu Z, Zheng Y, Zhang D, Zhang Z, Liu X (2017) Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release. Nanotechnology:28–25

    Google Scholar 

  • Yin T, Wang P, Li J et al (2013) Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 34:4532–4543

    CAS  Google Scholar 

  • Zhang L, Wang T, Yang L, Liu C, Wang C, Liu H, Su Z (2012) General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem-A Eur J 18:12512–12521

    CAS  Google Scholar 

  • Zhou Q, Shao SQ, Wang JQ, Xu CH, Xiang JJ, Piao Y et al (2019) Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol 14:799–809. https://doi.org/10.1038/s41565-019-0485-z

    Article  CAS  Google Scholar 

  • Zhu L, Wang T, Perche F, Taigind A, Torchilin VP (2013) Enhanced anticanceractivity of nanopreparation containing an MMP2-sensitive PEG-drug conjugateandcell-penetratingmoiety. Proc Nat Acad Sci 110(42):17047–17052

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, P., Poonia, A., Jangra, M., Ankur (2022). Application of Stimuli-Responsive Polymers in Cancer Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_50

Download citation

Publish with us

Policies and ethics