Skip to main content

Advertisement

Log in

Synthesis, solvent interactions and Hansen solubility parameters of polyvinyl butyral

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, polyvinyl butyral (PVB) with number-average molecular weight of 35,700 g mol−1 and butyraldehyde content of 78.66% was synthesized, and was characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), derivative thermogravimetric analysis (DTG) and pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The results showed that the prepared PVB has high degree of acetalization and high thermal stability. Hansen solubility parameters (HSPs) of PVB were determined by HSPiP software, turbidimetric titration, intrinsic viscosity method and group contribution method. The Flory–Huggins interaction parameters (χ and χHSP) between PVB and solvents were calculated, and the results showed that the intrinsic viscosity [η] increased linearly with the decrease of χ and χHSP values. Both the graph of [η] versus χ and the graph of [η] versus χHSP can be divided into dissolving area and nondissolving area by χ = 0.5 and χHSP = 0.5, which fully proved that the HSPs obtained in this paper were convincing. It is expected that these parameters are available for predicting the solubility of PVB in various solvents and the compatibility with additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data and materials support published claims and comply with field standards.

References

  1. Lin XY, Wang K, Zhang JS, Luo GS (2015) Process intensification of the synthesis of poly(vinyl butyral) using a microstructured chemical system. Ind Eng Chem Res 54:3582–3588. https://doi.org/10.1021/acs.iecr.5b00911

    Article  CAS  Google Scholar 

  2. Lian F, Wen Y, Ren Y, Guan H (2014) A novel PVB based polymer membrane and its application in gel polymer electrolytes for lithium-ion batteries. J Membr Sci 456:42–48. https://doi.org/10.1016/j.memsci.2014.01.010

    Article  CAS  Google Scholar 

  3. Zhang P, Wang Y, Xu Z, Yang H (2011) Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive. Desalination 278:186–193. https://doi.org/10.1016/j.desal.2011.05.026

    Article  CAS  Google Scholar 

  4. Ma X, Sun Q, Su Y, Wang Y, Jiang Z (2007) Antifouling property improvement of poly(vinyl butyral) ultrafiltration membranes through acid treatment. Sep Purif Technol 54:220–226. https://doi.org/10.1016/j.seppur.2006.09.006

    Article  CAS  Google Scholar 

  5. Ruediger T, Berg A, Guellmar A, Rode C, Schnabelrauch M, Urbanek A, Wagner K, Wyrwa R, Kinne RW, Sigusch BW (2012) Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 osteoblast cell cultures. Dent Mater 28:239–249. https://doi.org/10.1016/j.dental.2012.05.008

    Article  CAS  Google Scholar 

  6. Posavec D, Dorsch A, Bogner U, Bernhardt G, Nagl S (2011) Polyvinyl butyral nanobeads: preparation, characterization, biocompatibility and cancer cell uptake. Microchim Acta 173:391–399. https://doi.org/10.1007/s00604-011-0573-8

    Article  CAS  Google Scholar 

  7. Kraft A, Rottmann M (2009) Properties, performance and current status of the laminated electrochromic glass of Gesimat. Sol Energy Mater Sol Cells 93:2088–2092. https://doi.org/10.1016/j.solmat.2009.05.010

    Article  CAS  Google Scholar 

  8. Liu H, Feng Y, Wang Z, Wang K, Xie J (2008) A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes. Powder Technol 184:313–317. https://doi.org/10.1016/j.powtec.2007.09.002

    Article  CAS  Google Scholar 

  9. Zhou BY, Lin XY, Wang K, Luo GS (2017) Technology for an energy-saving and fast synthesis of polyvinyl butyral in a microreactor system. Ind Eng Chem Res 56:14463–14470. https://doi.org/10.1021/acs.iecr.7b03906

    Article  CAS  Google Scholar 

  10. Zhou X, Sun K, Gao J, Le S, Zhang N, Wang P (2009) Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting. J Power Sources 191:528–533. https://doi.org/10.1016/j.jpowsour.2009.02.008

    Article  CAS  Google Scholar 

  11. Thejo Kalyani N, Dhoble SJ (2012) Organic light emitting diodes: Energy saving lighting technology–a review. Renew Sustain Energy Rev 16:2696–2723. https://doi.org/10.1016/j.rser.2012.02.021

    Article  CAS  Google Scholar 

  12. Dhaliwal AK, Hay JN (2002) The characterization of polyvinyl butyral by thermal analysis. Thermochim Acta 391:245–255

    Article  CAS  Google Scholar 

  13. Zhang XH, Yang GL, Hu JQ, Zhang CY (2013) Preparation of alcohol-soluble polyvinyl butyral. Adv Mater Res 750–752:1831–1835. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1831

    Article  CAS  Google Scholar 

  14. Hildebrand JH (1949) A critique of the theory of solubility of non-electrolytes. Chem Rev 44:37–45

    Article  CAS  PubMed  Google Scholar 

  15. Hildebrand JH (1965) Order from chaos. Science 150:441–450

    Article  CAS  PubMed  Google Scholar 

  16. Hansen CM (2007) Solubility parameters–an introduction. Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, pp 4–9

    Chapter  Google Scholar 

  17. Lin X, Yan S, Zhou B, Wang K, Zhang J, Luo G (2017) Highly efficient synthesis of polyvinyl butyral (PVB) using a membrane dispersion microreactor system and recycling reaction technology. Green Chem 19:2155–2163. https://doi.org/10.1039/c7gc00670e

    Article  CAS  Google Scholar 

  18. Yang B, Liu R, Huang J, Sun H (2013) Reverse dissolution as a route in the synthesis of poly(vinyl butyral) with high butyral contents. Ind Eng Chem Res 52:7425–7431. https://doi.org/10.1021/ie400559s

    Article  CAS  Google Scholar 

  19. Fernández MD, Fernández MJ, Hoces P (2006) Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties. J Appl Polym Sci 102:5007–5017. https://doi.org/10.1002/app.25004

    Article  CAS  Google Scholar 

  20. Fernández MD, Fernández MJ, Hoces P (2008) Poly(vinyl acetal)s containing electron-donor groups: Synthesis in homogeneous phase and their thermal properties. React Funct Polym 68:39–56. https://doi.org/10.1016/j.reactfunctpolym.2007.10.012

    Article  CAS  Google Scholar 

  21. Hansen CM (2007) Methods of characterization-polymers. Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, pp 99–106

    Chapter  Google Scholar 

  22. Hansen CM (2007) Appendix A. Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, pp 345–483

    Chapter  Google Scholar 

  23. Suh KW, Clarke DH (1967) Cohesive energy densities of polymers from turbidimetric titrations. J Polym Sci, Part A-1 Polym Chem 5:1671–1681

    Article  CAS  Google Scholar 

  24. Suh KW, Corbet JM (1968) Solubility parameters of polymers from turbidimetric titrations. J Polym Sci, Part A-1: Polym Chem 12:2359–2370

    CAS  Google Scholar 

  25. Boucher DS (2020) Solubility parameters and solvent affinities for polycaprolactone: a comparison of methods. J Appl Polym Sci 137:48908–48920. https://doi.org/10.1002/app.48908

    Article  CAS  Google Scholar 

  26. Segarceanu O, Leca M (1997) Improved method to calculate Hansen solubility parameters of a polymer. Prog Org Coat 31:307–310

    Article  CAS  Google Scholar 

  27. Van Krevelen DW, Te Nijenhuis K (2009) Cohesive properties and solubility. Properties of polymers. Elsevier, Amsterdam, pp 213–220

    Google Scholar 

  28. Stefanis E, Panayiotou C (2008) Prediction of hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–585. https://doi.org/10.1007/s10765-008-0415-z

    Article  CAS  Google Scholar 

  29. Easley AD, Vukin LM, Flouda P, Howard DL, Pena JL, Lutkenhaus JL (2020) Nitroxide radical polymer-solvent interactions and solubility parameter determination. Macromolecules 53:7997–8008. https://doi.org/10.1021/acs.macromol.0c01739

    Article  CAS  Google Scholar 

  30. Schenderlein S, Luck M, Muller BW (2004) Partial solubility parameters of poly(D, L-lactide-co-glycolide). Int J Pharm 286:19–26. https://doi.org/10.1016/j.ijpharm.2004.07.034

    Article  CAS  PubMed  Google Scholar 

  31. Qin X-X, Cheng Z-L (2016) Application of ionic liquids as a catalyst in the synthesis of polyvinyl butyral (PVB) polymer. Chin Chem Lett 27:145–148. https://doi.org/10.1016/j.cclet.2015.07.012

    Article  CAS  Google Scholar 

  32. Bai YK, Chen Y, Wang QH, Wang TM (2014) Poly(vinyl butyral) based polymer networks with dual-responsive shape memory and self-healing properties. J Mater Chem A 2:9169–9177. https://doi.org/10.1039/c4ta00856a

    Article  CAS  Google Scholar 

  33. Hoepfner JC, Loos MR, Pezzin SH (2019) Role of the degree of acetalization on dynamic mechanical properties of polyvinyl butyral/carbon nanotube composites. J Appl Polym Sci. https://doi.org/10.1002/app.48146

    Article  Google Scholar 

  34. Liau LCK, Yang TCK, Viswanath DS (1996) Reaction pathways and kinetic analysis of PVB thermal degradation using TG/FT-IR. Appl Spectrosc 50:1058–1065

    Article  CAS  Google Scholar 

  35. Kingston GC, Yuen HK (1987) Application of evolved gas analysis to the study of poly(vinyl butyral) thermal stability. Thermochim Acta 116:317–327. https://doi.org/10.1016/0040-6031(87)88192-3

    Article  CAS  Google Scholar 

  36. Bordes C, Freville V, Ruffin E, Marote P, Gauvrit JY, Briancon S, Lanteri P (2010) Determination of poly(epsilon-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm 383:236–243. https://doi.org/10.1016/j.ijpharm.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  37. Hansen CM (2007) Theory-the prigogine corresponding states theory, χ12 interaction parameter, and hansen solubility parameters. Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, pp 27–33

    Chapter  Google Scholar 

  38. Wang YZ, Bi LY, Zhang HJ, Zhu XT, Liu GY, Qiu GX, Liu SS (2019) Predictive power in oil resistance of fluororubber and fluorosilicone rubbers based on three-dimensional solubility parameter theory. Polym Test 75:380–386. https://doi.org/10.1016/j.polymertesting.2019.03.004

    Article  CAS  Google Scholar 

  39. Liu SS, Li XP, Qi PJ, Song ZJ, Zhang Z, Wang K, Qiu GX, Liu GY (2020) Determination of three-dimensional solubility parameters of styrene butadiene rubber and the potential application in tire tread formula design. Polym Test 81:106170–106174. https://doi.org/10.1016/j.polymertesting.2019.106170

    Article  CAS  Google Scholar 

  40. Lindvig T, Michelsen ML, Kontogeorgis GM (2002) A Flory-Huggins model based on the Hansen solubility parameters. Fluid Phase Equilib 203:247–260

    Article  CAS  Google Scholar 

  41. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61. https://doi.org/10.1063/1.1723621

    Article  CAS  Google Scholar 

  42. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling J Chem Phys 11:521–526. https://doi.org/10.1063/1.1723792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support under the research grant 420094 from Sinopec Shanghai Research Institute of Petrochemical Technology is acknowledged.

Funding

This work was supported by Sinopec Shanghai Research Institute of Petrochemical Technology under Grant 420094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoxiang Zeng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chunyu Wang and Wenwen Luan contributed equally to this work and should be considered co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Luan, W., Zeng, Z. et al. Synthesis, solvent interactions and Hansen solubility parameters of polyvinyl butyral. Polym. Bull. 80, 6363–6383 (2023). https://doi.org/10.1007/s00289-022-04366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04366-0

Keywords

Navigation