Skip to main content
Log in

Characterization of unmodified and modified apricot kernel shell/epoxy resin biocomposites by ultrasonic wave velocities

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The main goal of this research was to develop highly durable, low-cost eco-friendly biocomposites from apricot kernel shell (AKS) wastes and ultrasonic characterization of AKS-based obtained biocomposites. Natural AKS wastes were chemically modified using 5 wt% sodium hydroxide (NaOH) and 99 wt% glacial acetic acid (AA). These modified apricot kernel shells (MAKS) and unmodified apricot kernel shells (UMAKS) were added into bisphenol-A type epoxy resin (ER) in varied compositions such as 10–50 wt% to prepare the MAKS/ER and the UMAKS/ER biocomposites. The epoxy resin-mixture in the weight ratios of resin/hardener/accelerator was 100:30:1. The effect of AKS powder ratios and modifiers on the elastic properties (Young’s moduli [E], bulk moduli [K], longitudinal moduli [L], shear moduli [G], and Poisson’s ratio [µ]), density (ρ), damping properties (attenuation coefficient [α], loss tangent [tanδ], and quality factor [Q]), ultrasonic micro-hardness (H), and acoustic impedance (Z) of biocomposites was investigated by the ultrasonic testing (UT) method. The morphological structure of the ER and biocomposites was figured out using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The results revealed an increase in elastic properties of most of the AKS/ER biocomposites compared to the neat ER. On the other hand, results have shown that SEM and XRD images’ analysis confirmed the amorphous structure of ER and biocomposites. The highest ρ, vL, vS, L, G, E, H, and Z values were obtained in MAKS-AA/ER-5 biocomposite. Thus, it can be stated that the MAKS-AA/ER-5 biocomposite sample has the best mechanical properties. Also, the results revealed that the MAKS-AA/ER-1 sample can be used as an alternative material for its high Q-factor value instead of wood in producing musical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McHugh J (2008) Ultrasound technique for the dynamic mechanical analysis (DMA) of polymers. BAM, Berlin

    Google Scholar 

  2. Oral I, Soydal U, Bentahar M (2017) Ultrasonic characterization of andesite waste-reinforced composites. Polym Bull 74(5):1899–1914. https://doi.org/10.1007/s00289-016-1811-3

    Article  CAS  Google Scholar 

  3. Pradhan S, Acharya SK, Prakash V (2021) Mechanical, morphological, and tribological behavior of Eulaliopsis binata fiber epoxy composites. J Appl Polym Sci 138(12):e50077/1-10. https://doi.org/10.1002/app.50077

    Article  CAS  Google Scholar 

  4. Preghenella M, Pegoretti A, Migliaresi C (2005) Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46(26):12065–12072. https://doi.org/10.1016/j.polymer.2005.10.098

    Article  CAS  Google Scholar 

  5. Ruan S, Wei S, Gong W, Li Z, Gu J, Shen C (2021) Strengthening, toughening, and self-healing for carbon fiber/epoxy composites based on PPESK electrospun coaxial nanofibers. J Appl Polym Sci 138(12):e50063/1-8. https://doi.org/10.1002/app.50063

    Article  CAS  Google Scholar 

  6. Santos JC, Vieira LMG, Panzera TH, Schiavon MA, Christoforo AL, Scarpa F (2015) Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Mater Des 65:543–549. https://doi.org/10.1016/j.matdes.2014.09.052

    Article  CAS  Google Scholar 

  7. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10506–10516. https://doi.org/10.1016/j.polymer.2005.08.028

    Article  CAS  Google Scholar 

  8. Wu S, Li F, Wang H, Fu L, Zhang B, Li G (2010) Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51(26):6203–6211. https://doi.org/10.1016/j.polymer.2010.10.015

    Article  CAS  Google Scholar 

  9. Zheng Y, Zheng Y, Ning R (2003) Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Lett 57(19):2940–2944. https://doi.org/10.1016/S0167-577X(02)01401-5

    Article  CAS  Google Scholar 

  10. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  11. Finkenstadt VL, Liu C-K, Evangelista R, Liu L, Cermak SC, Hojilla-Evangelista M, Willett JL (2007) Poly(lactic acid) green composites using oilseed coproducts as fillers. Ind Crops Prod 26(1):36–43. https://doi.org/10.1016/j.indcrop.2007.01.003

    Article  CAS  Google Scholar 

  12. Salmah H, Koay SC, Hakimah O (2012) Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater 26(6):809–819. https://doi.org/10.1177/0892705711429981

    Article  CAS  Google Scholar 

  13. Fraga F, Vazquez I, Rodriguez-Nunez E, Martinez-Ageitos JM, Miragaya J (2009) Influence of the filler CaCO3 on the cure kinetic of the epoxy network diglycidyl ether of bisphenol a (BADGE n=0) with isophorone diamine. J Appl Polym Sci 114(5):3338–3342. https://doi.org/10.1002/app.30253

    Article  CAS  Google Scholar 

  14. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A-Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  CAS  Google Scholar 

  15. Zakriya M, Ramakrishnan G, Gobi N, Palaniswamy NK, Srinivasan J (2017) Jute-reinforced non-woven composites as a thermal insulator and sound absorber - a review. J Reinf Plast Compos 36(3):206–213. https://doi.org/10.1177/0731684416679745

    Article  CAS  Google Scholar 

  16. Koyuncu M, Karahan M, Karahan N, Shaker K, Nawab Y (2016) Static and dynamic mechanical properties of cotton/epoxy green composites. Fibres Text East Eur 24(4):105–111. https://doi.org/10.5604/12303666.1201139

    Article  CAS  Google Scholar 

  17. Kocaman S (2020) Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids. Int J Phytoremed 22(5):551–566. https://doi.org/10.1080/15226514.2020.1741509

    Article  CAS  Google Scholar 

  18. Mohankumararadhya HM, Wadappi P, Chandrashekar A, Naik Y (2020) Studies on bio waste product particle reinforced polymer composites. AIP Conf Proceed 2274:030047/1-8. https://doi.org/10.1063/5.0022746

    Article  CAS  Google Scholar 

  19. Olumuyiwa AJ, Isaac TS, Samuel SO (2012) Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J Miner Mater Char Eng 11(08):774–779. https://doi.org/10.4236/jmmce.2012.118065

    Article  Google Scholar 

  20. Somashekhar TM, Naik P, Nayak V, Mallikappa RS (2018) Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conf Ser: Mater Sci Eng 376:012105. https://doi.org/10.1088/1757-899X/376/1/012105

    Article  Google Scholar 

  21. Kocaman S (2020) Chemical modification of apricot kernel shell waste and its effect on phenolic novolac epoxy composites. J Appl Polym Sci 137(30):e49267/1-12. https://doi.org/10.1002/app.49267

    Article  CAS  Google Scholar 

  22. Akindapo JO, Harrison A, Sanusi OM (2014) Evaluation of mechanical properties of coconut shell fibres as reinforcement material in epoxy matrix. Int J Eng Res Technol 3(2):2337–2348

    Google Scholar 

  23. Shih YF, Cai JX, Kuan CS, Hsieh CF (2012) Plant fibers and wasted fiber/epoxy green composites. Compos Part B-Eng 43(7):2817–2821. https://doi.org/10.1016/j.compositesb.2012.04.044

    Article  CAS  Google Scholar 

  24. Ho MP, Wang H, Lee JH, Ho CK, Lau KT, Leng JS, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B-Eng 43(8):3549–3562. https://doi.org/10.1016/j.compositesb.2011.10.001

    Article  CAS  Google Scholar 

  25. Lu TJ, Jiang M, Jiang ZG, Hui D, Wang ZY, Zhou ZW (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B-Eng 51:28–34. https://doi.org/10.1016/j.compositesb.2013.02.031

    Article  CAS  Google Scholar 

  26. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B-Eng 43(7):2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  27. Kocaman S (2019) Preparation and characterization of natural waste reinforced epoxy resin matrix composites modified with different chemicals. Int J Eng Res Dev 11(1):77–86. https://doi.org/10.29137/umagd.459758

    Article  Google Scholar 

  28. Arrakhiz FZ, Malha M, Bouhfid R, Benmoussa K, Qaiss A (2013) Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Compos Part B-Eng 47:35–41. https://doi.org/10.1016/j.compositesb.2012.10.046

    Article  CAS  Google Scholar 

  29. Kabir MM, Wang H, Lau KT, Cardona F (2013) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos Part B-Eng 53:362–368. https://doi.org/10.1016/j.compositesb.2013.05.048

    Article  CAS  Google Scholar 

  30. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  31. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos Part B-Eng 43(7):2827–2835. https://doi.org/10.1016/j.compositesb.2012.04.046

    Article  CAS  Google Scholar 

  32. Bouhamed N, Souissi S, Marechal P, Amar MB, Lenoir O, Leger R, Bergeret A (2020) Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour. Mech Mater 148:103445/1-11. https://doi.org/10.1016/j.mechmat.2020.103445

    Article  Google Scholar 

  33. Oral I, Guzel H, Ahmetli G (2013) Determining the mechanical properties of epoxy resin (DGEBA) composites by ultrasonic velocity measurement. J Appl Polym Sci 127(3):1667–1675. https://doi.org/10.1002/app.37534

    Article  CAS  Google Scholar 

  34. Simonetti F, Cawley P, Demčenko A (2005) On the measurement of the Young’s modulus of small samples by acoustic interferometry. J Acoust Soc Am 118(2):832–840. https://doi.org/10.1121/1.1942387

    Article  Google Scholar 

  35. Castellano A, Foti P, Fraddosio A, Marzano S, Piccioni M (2016) A new ultrasonic immersion technique for the evaluation of damage induced anisotropy in composite materials. 3rd International Balkans Conference on Challenges of Civil Engineering (3-BCCCE), 273–282, Epoka University, Tirana, Albania.

  36. El-Sabbagh A, Steuernagel L, Ziegmann G (2013) Characterisation of flax polypropylene composites using ultrasonic longitudinal sound wave technique. Compos Part B-Eng 45(1):1164–1172. https://doi.org/10.1016/j.compositesb.2012.06.010

    Article  CAS  Google Scholar 

  37. Ghodhbani N, Maréchal P, Duflo H (2016) Ultrasound monitoring of the cure kinetics of an epoxy resin: Identification, frequency and temperature dependence. Polym Test 56:156–166. https://doi.org/10.1016/j.polymertesting.2016.10.009

    Article  CAS  Google Scholar 

  38. Lefebvre G, Wunenburger R, Valier-Brasier T (2018) Ultrasonic rheology of visco-elastic materials using shear and longitudinal waves. Appl Phys Lett 112:241906/1-5. https://doi.org/10.1063/1.5029905

    Article  CAS  Google Scholar 

  39. Merotte J, Le Duigou A, Bourmaud A, Behlouli K, Baley C (2016) Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polym Test 51:174–180. https://doi.org/10.1016/j.polymertesting.2016.03.002

    Article  CAS  Google Scholar 

  40. Fangaj E, Ceyhan AA (2020) Apricot kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. Int J Hydrog Energy 45(35):17104–17117. https://doi.org/10.1016/j.ijhydene.2020.04.133

    Article  CAS  Google Scholar 

  41. Wu F, Liu C, Sun W, Zhang L (2018) Mechanical properties of bio-based concrete containing blended peach shell and apricot shell waste. Mater Tehnol 52(5):645–651. https://doi.org/10.17222/MIT.2018.065

    Article  CAS  Google Scholar 

  42. Ramírez-Arreola DE, Sedano-de la Rosa C, Haro-Mares NB, Ramírez-Morán JA, Pérez-Fonseca AA, Robledo-Ortíz JR (2015) Compressive strength study of cement mortars lightened with foamed HDPE nanocomposites. Mater Des 74:119–124. https://doi.org/10.1016/j.matdes.2015.02.013

    Article  CAS  Google Scholar 

  43. Jeyranpour F, Alahyarizadeh G, Arab B (2015) Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J Mol Graph Model 62:157–164. https://doi.org/10.1016/j.jmgm.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  44. ASTM D638–14 (2014)Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA: ASTM International.

  45. ASTM E766–14 (2019) Standard Practice for Calibrating the Magnification of a Scanning Electron Microscope. West Conshohocken, PA: ASTM International.

  46. ASTM D792–20 (2020) Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. West Conshohocken, PA: ASTM International.

  47. ASTM E494–20 (2020) Standard Practice for Measuring Ultrasonic Velocity in Materials by Comparative Pulse-Echo Method. West Conshohocken, PA: ASTM International.

  48. Papadakis EP (1967) Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase corrections. J Acoust Soc Am 42(5):1045–1051. https://doi.org/10.1121/1.1910688

    Article  Google Scholar 

  49. Afifi H, Sayed A (2003) Ultrasonic properties of ENR-EPDM rubber blends. Polym Bull 50:115–122. https://doi.org/10.1007/s00289-003-0135-2

    Article  CAS  Google Scholar 

  50. Oral I, Guzel H, Ahmetli G, Gur CH (2011) Determining the elastic properties of modified polystyrenes by sound velocity measurements. J Appl Polym Sci 121(6):3425–3432. https://doi.org/10.1002/app.33860

    Article  CAS  Google Scholar 

  51. Perepechko II (1975) Acoustic methods of investigating polymers. Mir, Moscow

    Google Scholar 

  52. Ali MGS, Elsayed NZ, Eid AM (2013) Ultrasonic attenuation and velocity in steel standard reference blocks. Romanian J Acoustic Vibration 10(1):33–38

    Google Scholar 

  53. Judawisastra H, Claudia Sasmita F, Agung PT (2019) Elastic modulus determination of thermoplastic polymers with pulse-echo method ultrasonic testing. IOP Conf Ser: Mater Sci Eng 547:012047/1-9. https://doi.org/10.1088/1757-899X/547/1/012047

    Article  Google Scholar 

  54. Ono K (2020) A Comprehensive report on ultrasonic attenuation of engineering materials, including metals, ceramics, polymers, fiber-reinforced composites, wood, and rocks. Appl Sci 10(7):2230/1-52. https://doi.org/10.3390/app10072230

    Article  CAS  Google Scholar 

  55. Sahnoune A, Massines F, Piché L (1996) Ultrasonic measurement of relaxation behavior in polystyrene. J Polym Sci Part B-Polym Phys 34(2):341–348. https://doi.org/10.1002/(SICI)1099-0488(19960130)34:2%3c341::AID-POLB15%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  56. Kocaman S, Soydal U, Ahmetli G (2021) Influence of cotton waste and flame-retardant additives on the mechanical, thermal, and flammability properties of phenolic novolac epoxy composites. Cellulose 28(12):7765–7780. https://doi.org/10.1007/s10570-021-04037-9

    Article  CAS  Google Scholar 

  57. Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SV (2019) Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J Compos Mater 53(12):1579–1669. https://doi.org/10.1177/0021998318772152

    Article  CAS  Google Scholar 

  58. Swarup S (2011) A Comparative study of bisphenol-A, hydantoin and cyanuric acid based epoxy resins using XRD. Mater Sci Appl 02(10):1516–2159. https://doi.org/10.4236/msa.2011.210204

    Article  CAS  Google Scholar 

  59. Kusakli S, Kocaman S, Ceyhan AA, Ahmetli G (2021) Improving the flame retardancy and mechanical properties of epoxy composites using flame retardants with red mud waste. J Appl Polym Sci 138(13):e50106/1-15. https://doi.org/10.1002/app.50106

    Article  CAS  Google Scholar 

  60. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200. https://doi.org/10.1016/j.ijbiomac.2017.01.029

    Article  CAS  PubMed  Google Scholar 

  61. Jalili MM, Mousavi SY, Pirayeshfar AS (2014) Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites. Polym Compos 35(11):2103–2111. https://doi.org/10.1002/pc.22872

    Article  CAS  Google Scholar 

  62. Beranek LL, Mellow TJ (2012) Chapter 1-Introduction and terminology. In: Beranek LL, Mellow TJ (eds) Acoustics: sound fields and transducers. Academic Press, pp 1–19

    Google Scholar 

  63. Gibbs V, Cole D, Sassano A (2009) Ultrasound physics and technology: how, why and when. Elsevier, Oxford

    Google Scholar 

  64. Wegst UGK (2008) Bamboo and wood in musical instruments. Annu Rev Mater Res 38(1):323–349. https://doi.org/10.1146/annurev.matsci.38.060407.132459

    Article  Google Scholar 

  65. Rabhi S, Abdi S, Halimi R, Benghanem N (2021) Green epoxy resin/date stone flour biocomposites: Effect of filler chemical treatments on elastic properties. Polym Compos 42(9):4736–4753. https://doi.org/10.1002/pc.26183

    Article  CAS  Google Scholar 

  66. Amin VR (1989) Ultrasonic attenuation estimation for tissue characterization. Retrospective Theses and Dissertations. Ames, Iowa State University. Doi: https://doi.org/10.31274/rtd-180813-8099

  67. Zhang Y (2013) Measuring acoustic attenuation of polymer materials using drop ball test. Department of aerospace engineering. Embry-Riddle Aeronautical University, Florida

    Google Scholar 

  68. Darvishi MR (2001) Encyclopaedia of Iranian musical instruments. Mahoor Institute of Culture and Art, Iranian.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Oral.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oral, I., Kocaman, S. & Ahmetli, G. Characterization of unmodified and modified apricot kernel shell/epoxy resin biocomposites by ultrasonic wave velocities. Polym. Bull. 80, 5529–5552 (2023). https://doi.org/10.1007/s00289-022-04328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04328-6

Keywords

Navigation