Skip to main content
Log in

Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate-co-terephthalate) films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polylactic acid/thermoplastic starch/poly(butylene adipate-co-terephthalate) (PLA/TPS/PBAT) blend is a promising biodegradable material for flexible packaging applications. However, this material still has insufficient mechanical and gas barrier properties for flexible packaging applications due to the immiscibility and random molecular orientation of the polymers. The objective of this work was to improve the performance of the blend using the biaxial stretching process. The effect of the biaxial stretching parameters (stretching rate and annealing time) on the morphological, mechanical, thermal, and gas barrier properties of PLA/TPS/PBAT (40/40/20) films was investigated. The stretching rate and annealing time were varied in the ranges of 22.5–300 mm/s and 0–180 s, respectively. The biaxial stretching parameters affected the morphology of the stretched films of PLA/TPS/PBAT blend. Results obtained from X-ray diffraction and differential scanning calorimetry revealed that biaxial stretching increased ordered structure and crystallinity of PLA and PBAT. For unannealed stretched films, increasing the stretching rate from 22.5 to 300 mm/s led to reduced crystal sizes of PLA, from 17.1 to 9.0 nm, and PBAT, from 17.6 to 12.3 nm. However, increasing the annealing time enlarged the crystals of both polyesters, especially PLA. The crystallinity of biaxially oriented films determined from PLA increased with stretching rate and annealing time, from 6 up to 34%. The increased ordered structure and crystallinity of PLA/TPS/PBAT films led to improved tensile strength and oxygen barrier property, approximately twofold and tenfold, respectively, when biaxial stretching was performed at a stretching rate of 150 mm/s and annealing time of 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  2. Gan I, Chow W (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161. https://doi.org/10.1016/j.fpsl.2018.06.012

    Article  Google Scholar 

  3. Leelaphiwat P, Pechprankan C, Siripho P, Bumbudsanpharoke N, Harnkarnsujarit N (2022) Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chem 369:130956. https://doi.org/10.1016/j.foodchem.2021.130956

    Article  CAS  PubMed  Google Scholar 

  4. Müller P, Bere J, Fekete E, Móczó J, Nagy B, Kállay M, Gyarmati B, Pukánszky B (2016) Interactions, structure and properties in PLA/plasticized starch blends. Polymer 103:9–18. https://doi.org/10.1016/j.polymer.2016.09.031

    Article  CAS  Google Scholar 

  5. Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282. https://doi.org/10.1016/j.carbpol.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  6. Ren J, Fu H, Ren T, Yuan W (2009) Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 77(3):576–582. https://doi.org/10.1016/j.carbpol.2009.01.024

    Article  CAS  Google Scholar 

  7. Shirai MA, Olivato JB, Garcia PS, Müller CMO, Grossmann MVE, Yamashita F (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly(lactic acid) addition. Mater Sci Eng C 33(7):4112–4117. https://doi.org/10.1016/j.msec.2013.05.054

    Article  CAS  Google Scholar 

  8. Eichelter J, Wilhelm H, Mautner A, Fahrngruber B, Schafler E, Eder A, Bismarck A (2021) High-velocity stretching of renewable polymer blends. J Polym Environ 29:3509–3524. https://doi.org/10.1007/s10924-021-02072-y

    Article  CAS  Google Scholar 

  9. Ivonkovic A, Zeljko K, Talic S, Lasic M (2017) Biodegradable packaging in the food industry. J Food Saf Food Qual 68:26–38. https://doi.org/10.2376/0003-925X-68-26

    Article  Google Scholar 

  10. Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  11. Palai B, Biswal M, Mohanty S, Nayak SK (2019) In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crop Prod 141:111748. https://doi.org/10.1016/j.indcrop.2019.111748

    Article  CAS  Google Scholar 

  12. Ayana B, Suin S, Khatua B (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. https://doi.org/10.1016/j.carbpol.2014.04.024

    Article  CAS  Google Scholar 

  13. Yimnak K, Thipmanee R, Sane A (2020) Poly(butylene adipate-co-terephthalate)/thermoplastic starch/zeolite 5A films: effects of compounding sequence and plasticizer content. Int J Biol Macromol 164:1037–1045. https://doi.org/10.1016/j.ijbiomac.2020.07.169

    Article  CAS  PubMed  Google Scholar 

  14. Kokturk G, Piskin E, Serhatkulu T, Cakmak M (2002) Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films. Polym Eng Sci 42(8):1619–1628. https://doi.org/10.1002/pen.11057

    Article  CAS  Google Scholar 

  15. Zhou J, Zheng Y, Shan G, Bao Y, Wang WJ, Pan P (2020) Stretch-induced crystalline structural evolution and cavitation of poly(butylene adipate-ran-butylene terephthalate)/poly(lactic acid) immiscible blends. Polymer 188:122121. https://doi.org/10.1016/j.polymer.2019.122121

    Article  CAS  Google Scholar 

  16. Demeuse MT (2011) Biaxial stretching of film-principles and applications. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  17. Lin YJ, Dias P, Chum S, Hiltner A, Baer E (2007) Surface roughness and light transmission of biaxially oriented polypropylene films. Polym Eng Sci 47(10):1658–1665. https://doi.org/10.1002/pen.20850

    Article  CAS  Google Scholar 

  18. Levin PP, Efremkin AF, Krivandin AV, Lomakin SM, Shatalova OV, Khudyakov IV (2018) Photoinduced reactions of benzophenone in biaxially oriented polypropylene. J Phys Chem A 122(17):4298–4305. https://doi.org/10.1021/acs.jpca.8b01483

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Zhang R, Meng L, Lin Y, Chen X, Li X, Zhang W, Li L (2016) Biaxial stretch-induced crystallization of poly(ethylene terephthalate) above glass transition temperature: the necessary of chain mobility. Polymer 101:15–23. https://doi.org/10.1016/j.polymer.2016.08.054

    Article  CAS  Google Scholar 

  20. Capt L, Rettenberger S, Münstedt H, Kamal MR (2003) Simultaneous biaxial deformation behavior of isotactic polypropylene films. Polym Eng Sci 43(7):1428–1441. https://doi.org/10.1002/pen.10121

    Article  CAS  Google Scholar 

  21. Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW (2010) Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polym Degrad Stab 95(8):1292–1298. https://doi.org/10.1016/j.polymdegradstab.2010.02.032

    Article  CAS  Google Scholar 

  22. Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheet 19(2):123–135. https://doi.org/10.1177/8756087903039702

    Article  CAS  Google Scholar 

  23. Delpouve N, Stoclet G, Saiter A, Dargent E, Marais S (2012) Water barrier properties in biaxially drawn poly(lactic acid) films. J Phys Chem B 116(15):4615–4625. https://doi.org/10.1021/jp211670g

    Article  CAS  PubMed  Google Scholar 

  24. Ou X, Cakmak M (2008) Influence of biaxial stretching mode on the crystalline texture in polylactic acid films. Polymer 49(24):5344–5352. https://doi.org/10.1016/j.polymer.2008.09.053

    Article  CAS  Google Scholar 

  25. Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Chinsirikul W, Kerddonfag N, Chirachanchai S (2015) Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polymer 68:234–245. https://doi.org/10.1016/j.polymer.2015.05.006

    Article  CAS  Google Scholar 

  26. Fukui Y, El-Khodary E, Yamamoto M, Yamane H (2017) Physical properties of stereocomplex type poly(lactic acid) biaxially drawn films. J Fiber Sci Technol 73(7):143–149. https://doi.org/10.2115/fiberst.2017-0020

    Article  Google Scholar 

  27. Chapleau N, Huneault M, Li H (2007) Biaxial orientation of polylactide/thermoplastic starch blends. Int Polym Proc 22(5):402–409. https://doi.org/10.3139/217.2070

    Article  CAS  Google Scholar 

  28. Jariyasakoolroj P, Tashiro K, Chinsirikul W, Kerddonfag N, Chirachanchai S (2019) Microstructural analyses of biaxially oriented polylactide/modified thermoplastic starch film with drastic improvement in toughness. Macromol Mater Eng 304(9):1900340. https://doi.org/10.1002/mame.201900340

    Article  CAS  Google Scholar 

  29. Rangrong Y, Khanh MD, Apinya B, Suwabun C (2021) Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters. Int J Biol Macromol 190:141–150. https://doi.org/10.1016/j.ijbiomac.2021.08.206

    Article  CAS  Google Scholar 

  30. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  31. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley-Interscience, New York

    Google Scholar 

  32. Fischer EW, Sterzel H, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid ZZ Polymer 251:980–990. https://doi.org/10.1007/BF01498927

    Article  CAS  Google Scholar 

  33. ASTM D882‒18 (2018) Standard test method for tensile properties of thin plastic sheeting. https://www.astm.org/d0882-00.html

  34. ASTM D3985‒17 (2017) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. https://doi.org/10.1520/D3985-17

  35. ASTM E96/E96M‒10 (2022) Standard test methods for water vapor transmission of materials. https://doi.org/10.1520/E0096_E0096M-22

  36. Samthong C, Seemork J, Nobukawa S, Yamaguchi M, Praserthdam P, Somwangthanaroj A (2015) Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching. J Appl Polym Sci 132(6):41415. https://doi.org/10.1002/app.41415

    Article  CAS  Google Scholar 

  37. Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Environ 14(4):393–401. https://doi.org/10.1007/s10924-006-0033-4

    Article  CAS  Google Scholar 

  38. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26(1):330–341. https://doi.org/10.1007/s10924-017-0951-3

    Article  CAS  Google Scholar 

  39. Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart J (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5:11–22. https://doi.org/10.1016/0926-6690(95)00048-8

    Article  Google Scholar 

  40. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37. https://doi.org/10.1016/j.polymertesting.2015.02.005

    Article  CAS  Google Scholar 

  41. Santos RA, Muller CM, Grossmann MVE, Mali S, Yamashita F (2014) Starch/poly(butylene adipate-co-terephthalate)/montmorillonite films produced by blow extrusion. Quim Nova 37(6):937–942. https://doi.org/10.5935/0100-4042.20140170

    Article  CAS  Google Scholar 

  42. Al-Itry R, Lamnawar K, Maazouz A, Billon N, Combeaud C (2015) Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur Polym J 68:288–301. https://doi.org/10.1016/j.eurpolymj.2015.05.001

    Article  CAS  Google Scholar 

  43. Klop EA, Lammers M (1998) XRD study of the new rigid-rod polymer fibre PIPD. Polymer 39(24):5987–5998. https://doi.org/10.1016/S0032-3861(97)10187-2

    Article  CAS  Google Scholar 

  44. Ou X, Cakmak M (2010) Comparative study on development of structural hierarchy in constrained annealed simultaneous and sequential biaxially stretched polylactic acid films. Polymer 51(3):783–792. https://doi.org/10.1016/j.polymer.2009.11.058

    Article  CAS  Google Scholar 

  45. Hindeleh A, Johnson D (1978) Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer 19(1):27–32. https://doi.org/10.1016/0032-3861(78)90167-2

    Article  CAS  Google Scholar 

  46. Billimoria K, Heeley EL, Parsons N, Figiel Ł (2018) An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regime. Eur Polym J 101:127–139. https://doi.org/10.1016/j.eurpolymj.2018.01.031

    Article  CAS  Google Scholar 

  47. Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Crystalline structure of annealed polylactic acid and its relation to processing. eXPRESS Polym Lett 4(10): 659–668 https://doi.org/10.3144/expresspolymlett.2010.80.

  48. Lee SC, Han JI, Jeong YG, Kwon M (2009) Strain-induced enthalpy relaxation in poly(lactic acid). Macromolecules 43(1):25–28. https://doi.org/10.1021/ma901880a

    Article  CAS  Google Scholar 

  49. Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010) New insights on the strain-induced mesophase of poly(D, L-lactide): in situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43(17):7228–7237. https://doi.org/10.1021/ma101430c

    Article  CAS  Google Scholar 

  50. Li Z, Ye L, Zhao X, Coates P, Caton-Rose F, Martyn M (2017) Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. J Ind Eng Chem 52:338–348. https://doi.org/10.1016/j.jiec.2017.04.008

    Article  CAS  Google Scholar 

  51. Srithep Y, Nealey P, Turng LS (2013) Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci 53(3):580–588. https://doi.org/10.1002/pen.23304

    Article  CAS  Google Scholar 

  52. Yu L, Liu H, Xie F, Chen L, Li X (2008) Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polym Eng Sci 48(4):634–641. https://doi.org/10.1002/pen.20970

    Article  CAS  Google Scholar 

  53. Wu JH, Yen MS, Wu CP, Li CH, Kuo M (2013) Effect of biaxial stretching on thermal properties, shrinkage and mechanical properties of poly(lactic acid) films. J Polym Environ 21(1):303–311. https://doi.org/10.1007/s10924-012-0523-5

    Article  CAS  Google Scholar 

  54. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(L-lactide): 1. annealing condition effects on properties and morphologies of poly(L-lactide). Polymer 36(14): 2709–2716 https://doi.org/10.1016/0032-3861(95)93647-5.

  55. Simmons H, Tiwary P, Colwell JE, Kontopoulou M (2019) Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polym Degrad Stab 166:248–257. https://doi.org/10.1016/j.polymdegradstab.2019.06.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) and the National Research Council of Thailand (NRCT) under the program of the Royal Golden Jubilee Ph.D. Program (PHD/0127/2561) and the Biodiversity-Based Economy Development Office (Public Organization), for scholarship and financial supports.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS; Methodology: AS, PJ; Formal analysis and investigation: PK; Writing—original draft preparation: PK; Writing—reviewing and editing: AS; Funding acquisition: AS; Supervision: PJ.

Corresponding author

Correspondence to Amporn Sane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katanyoota, P., Jariyasakoolroj, P. & Sane, A. Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Polym. Bull. 80, 5219–5237 (2023). https://doi.org/10.1007/s00289-022-04312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04312-0

Keywords

Navigation