Skip to main content
Log in

Crystallization effect of poly(L-lactic acid)/silver nanocomposites blends, on barrier and mechanical properties using glyceryl triacetate as plasticizer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Blends of poly(L-lactic acid)/nanoparticle silver and GTA (plasticizer) are present, and the crystallization effect was studied. The effect of the crystallization was investigated by oxygen permeability, isothermal crystallization, and mechanical behavior. Observed properties varied according to the concentration of Ag-NP (0.025–0.1%) dispersed in the continuous phase PLLA. Overall isothermal crystallization rates of the PLLA nanocomposites were higher than those of neat PLLA due to the nucleating effect of the Ag-NP and the enhanced chain mobility caused by the plasticizer (GTA). Ternary blends exhibited an improvement in toughness compared to PLLA alone. Also, the effect is due to the α and αʹ crystals growing up, as observed by XRD. The films exhibited a high barrier of oxygen permeability from 2118 to 18 cc·mm/m2·d, 99% lower than that of PLLA (or 117 times lower), Ag-NP concentration (0.1%) dispersed in the polymer with GTA as a plasticizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rasal R, Janorkar A, Hirt D (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  2. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  3. De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta 522:128–134. https://doi.org/10.1016/j.tca.2011.05.034

    Article  CAS  Google Scholar 

  4. Kalb B, Pennings A (1980) General crystallization behaviour of poly(l-lactic acid). Polymer 21:607–612. https://doi.org/10.1016/0032-3861(80)90315-8

    Article  CAS  Google Scholar 

  5. Cocca M, Di Lorenzo M, Malincolico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid. Eur Polym J 47:1073–1080. https://doi.org/10.1016/j.eurpolymj.2011.02.009

    Article  CAS  Google Scholar 

  6. Saiedlou S, Huneault M, Li H, Park C (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  7. Zhang J, Tashiro K, Tsuji H, Domb A (2008) Disorder-to-order phase transition and multiple melting behavior of Poly(lactic acid) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357. https://doi.org/10.1021/ma0706071

    Article  CAS  Google Scholar 

  8. Righetti M, Gazzano M, Di Lorenzo M, Androsch R (2015) Enthalpy of melting of α′-and α-crystals of poly (l-lactic acid). Eur Polym J 70:215–220. https://doi.org/10.1016/j.eurpolymj.2015.07.024

    Article  CAS  Google Scholar 

  9. Tang Z, Zhang C, Liu X, Zhu J (2012) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125:1108–1115. https://doi.org/10.1002/app.34799

    Article  CAS  Google Scholar 

  10. Courgneau C, Ducruet V, Averous L, Grenet J, Domenek S (2013) Nonoisothermal crystallization kinects of poly(lactide)-Effect of plasticizers and nucleating agent. Polym Eng Sci 53:1085–1098. https://doi.org/10.1002/pen.23357

    Article  CAS  Google Scholar 

  11. Shi X, Zhang G, Vu Phuong T, Lazzeri A (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 20:1579–1593. https://doi.org/10.3390/molecules20011579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305. https://doi.org/10.1002/pen.21755

    Article  CAS  Google Scholar 

  13. Karami S, Lafleur P (2015) Role of chain dynamics and topological confinements in cold crystallization of PLA-clay nanocomposites. Polym Eng Sci 55:1310–1320. https://doi.org/10.1002/pen.24070

    Article  CAS  Google Scholar 

  14. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol). Polymer 47:7178–7188. https://doi.org/10.1016/j.polymer.2006.03.115

    Article  CAS  Google Scholar 

  15. Salas-Papayanopolos H, Morales-Cepeda A, Sanchez S, Lafleur P, Gomez I (2017) Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(L-lactic acid)/glycerol triacetate blends. Polym Bull 74:4799–4814. https://doi.org/10.1007/s00289-017-1992-4

    Article  CAS  Google Scholar 

  16. Herrera N, Mathew A, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155. https://doi.org/10.1016/j.compositesa.2015.05.024

    Article  CAS  Google Scholar 

  17. Oskman K, Skrifvars M, Selin J (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci and Tech 63:1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

    Article  CAS  Google Scholar 

  18. An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi J (2007) Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. J Phys Chem C 111:18055–18059. https://doi.org/10.1021/jp0745081

    Article  CAS  Google Scholar 

  19. Kelly K, Coronado E, Zhao L, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  20. Van Dong P, Ha C, Binh L (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. J Int Nano Lett 2:9. https://doi.org/10.1186/2228-5326-2-9

    Article  Google Scholar 

  21. Shameli K, Bin Ahmad M, Wan Yunus W, Ibrahim N, Rahman R, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579. https://doi.org/10.2147/IJN.S13227

    Article  CAS  Google Scholar 

  22. Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23:316–320. https://doi.org/10.1007/s10924-015-0720-0

    Article  CAS  Google Scholar 

  23. Anakabe J, Zaldua Huici A, Eceiza A, Arbelaiz A, Avérous L (2017) Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide. Polym Bull 1:1–30. https://doi.org/10.1007/s00289-017-1989-z

    Article  CAS  Google Scholar 

  24. Mark H (2004) Encyclopedia of polymer science and technology. Willey, USA

    Google Scholar 

  25. Sperling L (2006) Introduction to physical polymer science. Willey, USA

    Google Scholar 

  26. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  27. Vodnik V, Bozanic DK, Dzunuzovic J, Vukoje I, Nedeljkovic J (2012) Silver/polystyrene nanocomposites: optical and thermal properties. Polym Compos 33:782–788. https://doi.org/10.1002/pc.22207

    Article  CAS  Google Scholar 

  28. Tjong SC, Bao S (2007) Structure and mechanical behavior of isotactic polypropylene composites filled with silver nanoparticles. E-Polymers 139:139–155. https://doi.org/10.1515/epoly.2007.7.1.1618

    Article  Google Scholar 

  29. Shieh Y, Liu G (2007) Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(L-lactic acid). J Polym Sci B Poly Phy 45:466–474. https://doi.org/10.1002/polb.21056

    Article  CAS  Google Scholar 

  30. Turner J, Riga A, O’Connor A, Zhang J, Collis J (2004) Characterization of drawn and undrawn poly- L -lactide films by differential scanning calorimetry. J Therm Anal Calorim 75:257–268. https://doi.org/10.1023/B:JTAN.0000017347.08469.b1

    Article  CAS  Google Scholar 

  31. Huang S, Li H, Jiang S, Chen X, An L (2011) Crystal structure and morphology influenced by shear effect of poly(l-lactide) and its melting behavior revealed by WAXD, DSC and in-situ POM. Polymer 52:3478–3487. https://doi.org/10.1016/j.polymer.2011.05.044

    Article  CAS  Google Scholar 

  32. Androsch R, Schick C, Di Lorenzo M (2014) Melting of conformationally disordered crystals (α′-Phase) of poly(l-lactic acid). Macromol Chem Physic 215:1134–1139. https://doi.org/10.1002/macp.201400126

    Article  CAS  Google Scholar 

  33. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  34. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III J Chem Phys 9:177–184. https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  35. Lorenzo A, Arnal M, Albuerne J, Müller A (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26:222–231. https://doi.org/10.1016/j.polymertesting.2006.10.005

    Article  CAS  Google Scholar 

  36. Xiao H, Ren X, Jiang T, Yeh J (2010) Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J Appl Polym Sci 118:3558–3569. https://doi.org/10.1002/app.32728

    Article  CAS  Google Scholar 

  37. Hermans PH, Weidinger A (1961) On the determination of the crystalline fraction of polyethylenes from X-ray diffraction. Die Makromol Cheme 44:24–36. https://doi.org/10.1002/macp.1961.020440103

    Article  Google Scholar 

  38. Chen X, Han L, Zhang T, Zhan J (2014) Influence of crystal polymorphism on crystallinity calculation of poly(L-lactic acid) by infrared spectroscopy. Vib Spectrosc 70:1–5. https://doi.org/10.1016/j.vibspec.2013.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Kees Joziasse who provides the PLLA from Corbion Purac. This work was supported by the Consejo Nacional de Ciencia y Tecnología [CONACyT, grant number 220989] and Tecnológico Nacional de México [TNM]. Hernán Peraza-Vazquez would like to express his gratitude to Instituto Politécnico Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Morales-Cepeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Papayanopolos, H., Morales-Cepeda, A.B., Wood-Adams, P. et al. Crystallization effect of poly(L-lactic acid)/silver nanocomposites blends, on barrier and mechanical properties using glyceryl triacetate as plasticizer. Polym. Bull. 80, 5273–5290 (2023). https://doi.org/10.1007/s00289-022-04309-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04309-9

Keywords

Navigation