Skip to main content
Log in

Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(l-lactic acid)/glycerol triacetate blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Monodispersed silver nanoparticles (Ag-NPs) were synthesized by chemical reduction in aqueous medium and transferred in chloroform to be redispersed in the plasticized matrix of poly(l-lactic acid) (PLA) by melt compounding. PLA nanocomposites were prepared using a combination of Ag-NPs in amounts of 0.01, 0.025, 0.05, 0.075 and 0.1% in weight, with 10 pph (parts per hundred) of glycerol triacetate (GTA) to be characterized by UV–Vis and Fourier transformed infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Optical properties showed that PLA nanocomposites have monodispersed Ag-NPs due to the intense SPR (surface plasmon resonance) absorption band at 414 nm, with a calculated particle size of ~30 nm. The crystallinity is gradually raised at a maximum level (21.1%) compared to the pure PLA (2.3%) and T g drastically decreased from 61 to 36.8 °C when Ag-NPs are incorporated in the plasticized PLA matrix. These results were consistent with the enhanced elastic modulus in DMA analysis, explained from the viewpoint of a good nanofiller dispersion and crystallization behavior, providing a stable and ordered crystal (α-form) in agreement with FTIR and DSC analysis. Finally, the outcomes indicate a synergistic effect between Ag-NPs and the plasticizer GTA, due to the nucleating effect of the monodispersed Ag-NPs and the mobility chain promoted by the plasticizer in the macromolecular arrangement of the PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  2. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  3. Liu H, Zhang J (2011) Research in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys 49:1051–1083

    Article  CAS  Google Scholar 

  4. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155

    Article  CAS  Google Scholar 

  5. Chieng B, Ibrahim N, Yunus W, Hussein M (2013) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers (Basel) 6:93–104

    Article  Google Scholar 

  6. Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310

    Article  CAS  Google Scholar 

  7. Picciochi R, Wang Y, Alves NM, Mano JF (2007) Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid Polym Sci 285:575–580

    Article  CAS  Google Scholar 

  8. Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and application. Wiley, USA

    Book  Google Scholar 

  9. Vodnik V, Božanić DK, Džunuzović J, Vukoje I, Nedeljković J (2012) Silver/polystyrene nanocomposites: optical and thermal properties. Polym Compos 33:782–788

    Article  CAS  Google Scholar 

  10. Puišo J, Prosyčevas I, Guobienė A, Tamulevičius S (2008) Plasmonic properties of silver in polymer. Mater Sci Eng B 149:230–236

    Article  Google Scholar 

  11. Tjong SC, Bao S (2007) Structure and mechanical behavior of isotactic polypropylene composites filled with silver nanoparticles. e-Polymers 7:1618–1634

    Google Scholar 

  12. An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2007) Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. J Phys Chem C 111:18055–18059

    Article  CAS  Google Scholar 

  13. Pozo D (2010) Silver Nanoparticles. InTech, Croatia

    Book  Google Scholar 

  14. Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939–1956

    Article  Google Scholar 

  15. Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS (2015) Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J 72:256–259

    Article  CAS  Google Scholar 

  16. Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly(lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579

    Article  CAS  Google Scholar 

  17. Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23:316–320

    Article  CAS  Google Scholar 

  18. Vasiliev AN, Gulliver EA, Khinast JG, Riman RE (2009) Highly dispersible polymer-coated silver nanoparticles. Surf Coatings Technol 203:2841–2844

    Article  CAS  Google Scholar 

  19. Jang MW, Kim J, Ihn KJ (2007) Properties of polypropylene nanocomposites containing silver nanoparticles. J Nanosci Nanotech 7:3990–3994

    Article  CAS  Google Scholar 

  20. Vodnik VV, Božanic DK, Džunuzovic E, Vukovic J, Nedeljkovic JM (2010) Thermal and optical properties of silver-poly(methylmethacrylate) nanocomposites prepared by in situ radical polymerization. Eur Polym J 46:137–144

    Article  CAS  Google Scholar 

  21. Radjabian M, Kish MH, Mohammadi N (2010) Characterization of poly (lactic acid) multifilament yarns. I. The structure and thermal behavior. J Appl Polym Sci 117:1516–1525

    Article  CAS  Google Scholar 

  22. Tang B, Xu S, Hou X, Li J, Sun L, Xu W, Wang X (2013) Shape evolution of silver nanoplates through heating and photoinduction. ACS Appl Mater Interfaces 5:646–653

    Article  CAS  Google Scholar 

  23. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  24. Henglein A (1998) Colloidal Silver Nanoparticles: photochemical Preparation and Interaction with O2, CCl4 and some Metal. Ions Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  25. Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mat 8:139–143

    Article  CAS  Google Scholar 

  26. Meaurio E, López-Rodríguez N, Sarasua JR (2006) Infrared spectrum of poly(l-lactide): application to crystallinity studies. Macromolecules 39:9291–9301

    Article  CAS  Google Scholar 

  27. Chen X, Han L, Zhang T, Zhang J (2014) Influence of crystal polymorphism on crystallinity calculation of poly(l-lactic acid) by infrared spectroscopy. Vib Spectrosc 70:1–5

    Article  CAS  Google Scholar 

  28. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macrom 38:8012–8021

    Article  CAS  Google Scholar 

  29. Wan T, Lin T, Tu Y (2016) Plasticizing effect of glyceryl tribenzoate, dipropylene glycol dibenzoate, and glyceryl triacetate on poly(lactic acid). Polym Eng Sci. doi:10.1002/pen.24375

    Google Scholar 

  30. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  31. Cocca M, Di Lorenzo ML, Malinconico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J 47:1073–1080

    Article  CAS  Google Scholar 

  32. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(lactic acid) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  33. Androsch R, Schick C, Di Lorenzo MA (2014) Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol chem Phys 215:1134–1139

    Article  CAS  Google Scholar 

  34. Tabi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Crystallization structure of annealed polylactic acid and its relation to processing. eXPRESS Polym Lett 4:659–668

    Article  CAS  Google Scholar 

  35. Zhao YQ, Cheung HY, Lau KT, Xu CL, Zhao DD, Li HL (2010) Silkworm silk/poly(lactic acid) biocomposites: dynamical mechanical, thermal and biodegradable properties. Polym Degrad Stab 95:1978–1987

    Article  CAS  Google Scholar 

  36. Menard KP, Menard NR (2015) Encyclopedia of polymer science & technology. Wiley, USA

    Google Scholar 

  37. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393:11

    Article  Google Scholar 

  38. Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mat Lett 55:83–87

    Article  CAS  Google Scholar 

  39. Diez-Gutierrez S, Rodriguez-Perez MA, De Saja JA, Velasco JI (1999) Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene composites. Polymer 40:5345–5353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Eng. Kees Joziasse who provides PLLA from Corbion Purac. The author Salas-Papayanopolos would like to acknowledge the personal support provided by Dr. Shair Karami in the administrative process during the stay of research at Ecole Polytechnique de Montreal. This work was supported by the Consejo Nacional de Ciencia y Tecnología [CONACyT, Grant Number 220989]; the Tecnológico Nacional de México [TNM, project name: Preparación y caracterización de un compuesto base Poli(ácido láctico)/nanopartículas de plata/fibras de carbono funcionalizadas (PLA/NPAg/FC), Grant Number 5719.16-P].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Morales-Cepeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Papayanopolos, H., Morales-Cepeda, A.B., Sanchez, S. et al. Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(l-lactic acid)/glycerol triacetate blends. Polym. Bull. 74, 4799–4814 (2017). https://doi.org/10.1007/s00289-017-1992-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1992-4

Keywords

Navigation