Skip to main content
Log in

Trithiocarbonate-mediated RAFT synthesis of a block copolymer: Silver nanoparticles integration and sensitive recognition of Hg2+

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Heavy metal ions, such as Hg2+, pose severe risks to the environment and human health. Therefore, sensitive determination of Hg2+ is necessary. Methyl methacrylate (MMA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) are used for the preparation of poly(MMA) (PMMA), poly(AMPS) (PAMPS), and a block copolymer, PMMA-b-PAMPS. The PMMA-b-PAMPS is further used for the synthesis of a silver nanocomposite, represented as Ag–(PMMA-b-PAMPS). The homopolymerization of MMA and AMPS is achieved by reversible addition-fragmentation chain transfer methodology using benzyl ethyl trithiocarbonate as a chain transfer agent. The synthesized polymers are characterized by several techniques including scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Ag–(PMMA-b-PAMPS) is characterized by SEM, XRD, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. Further, Ag–(PMMA-b-PAMPS) is exploited to construct an electrochemical sensing platform on a glassy carbon electrode surface for the sensitive determination of toxic Hg2+ present in trace amounts. The electrochemical characteristics of Ag–(PMMA-b-PAMPS) are analyzed with and without Hg2+ using cyclic voltammetry in 0.1 M pH 7.0 phosphate buffer at 20 mVs−1 scan rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pomogailo AD, Kestelman VN (2005) Metallopolymer nanocomposites. Springer, Berlin

    Book  Google Scholar 

  2. Rastogi PK, Ganesan V, Krishnamoorthi S (2013) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2(4):933–943. https://doi.org/10.1039/C3TA13794E

    Article  Google Scholar 

  3. Aboulthana WM, Youssef AM et al (2019) Evaluation of antioxidant efficiency of Croton tiglium L. seeds extracts after incorporating silver nanoparticles. Egyp J Chem 62(2):181–200. https://doi.org/10.21608/EJCHEM.2018.4960.1442

    Article  Google Scholar 

  4. Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735. https://doi.org/10.1021/jp046032g

    Article  CAS  PubMed  Google Scholar 

  5. Youssef AM, El-Aziz Abd ME et al (2019) Rational design and electrical study of conducting bionanocomposites hydrogel based on chitosan and silver nanoparticles. Int J Biol Macromol 140:886–894. https://doi.org/10.1016/j.ijbiomac.2019.08.199

    Article  CAS  PubMed  Google Scholar 

  6. Singho ND, Johan MR, Lah NAC (2014) Temperature-dependent properties of silver-poly (methylmethacrylate) nanocomposites synthesized by in-situ technique. Nanoscale Res Lett 9(1):1–6. https://doi.org/10.1186/1556-276X-9-42

    Article  CAS  Google Scholar 

  7. Stachurski ZH, Pfister LA (2002) Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behavior. Polymer. 43(26):7409–7417. https://doi.org/10.1016/S0032-3861(02)00689-4

    Article  CAS  Google Scholar 

  8. Vollrath A, Pretzel D, Pietsch C et al (2012) Preparation, cellular internalization, and biocompatibility of highly fluorescent PMMA nanoparticles. Macromol Rapid Commun 33(20):1791–1797. https://doi.org/10.1002/marc.201200329

    Article  CAS  PubMed  Google Scholar 

  9. Guo Z, Henry LL, Palshin V, Podlaha EJ (2006) Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J. Mater. Chem. 16(18):1772–1777. https://doi.org/10.1039/b515565g

    Article  CAS  Google Scholar 

  10. Jung HR, Lee WJ (2011) Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim Acta 58:674–680. https://doi.org/10.1016/J.ELECTACTA.2011.10.015

    Article  CAS  Google Scholar 

  11. Shen Y, Xi J, Qiu X, Zhu W (2007) A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochim Acta 52(24):6956–6961. https://doi.org/10.1016/J.ELECTACTA.2007.05.021

    Article  CAS  Google Scholar 

  12. Rastogi PK, Ganesan V, Krishnamoorthi S (2012) Ion exchange voltammetry at permselective copolymer modified electrode and its application for the determination of catecholamines. J Electroanal Chem 676:13–19. https://doi.org/10.1016/J.JELECHEM.2012.04.027

    Article  CAS  Google Scholar 

  13. Diao H, Yan F, Qiu L et al (2010) High performance cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid)-based proton exchange membranes for fuel cells. Macromolecules 43(15):6398–6405. https://doi.org/10.1021/ma1010099

    Article  CAS  Google Scholar 

  14. Lance Kelly K, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/JP026731Y

    Article  Google Scholar 

  15. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562. https://doi.org/10.1021/CR030067F

    Article  CAS  PubMed  Google Scholar 

  16. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118. https://doi.org/10.1007/S11468-007-9031-1

    Article  CAS  Google Scholar 

  17. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5(1):5133–5146. https://doi.org/10.1039/c1ee02875h

    Article  CAS  Google Scholar 

  18. Klajn R, Wesson PJ, Bishop KJM, Grzybowski BA (2009) Writing self-erasing images using metastable nanoparticle “inks.” Angew Chem Int Ed 48(38):7035–7039. https://doi.org/10.1002/ANIE.200901119

    Article  CAS  Google Scholar 

  19. Stepanov AL, Popok VN, Khaibullin IB, Kreibig U (2002) Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nucl Instrum Methods Phys Res Sect B Beam Inteeract Mater Atoms 191(1–4):473–477. https://doi.org/10.1016/S0168-583X(02)00595-5

    Article  CAS  Google Scholar 

  20. Kondyurin A, Bilek MMM (2011) Etching and structure changes in PMMA coating under argon plasma immersion ion implantation. Nucl Instrum Methods Phys Res Sect B Beam Inteeract Mater Atoms 269(12):1361–1369. https://doi.org/10.1016/J.NIMB.2011.04.001

    Article  CAS  Google Scholar 

  21. Yeum JH, Deng Y (2005) Synthesis of high molecular weight poly(methyl methacrylate) Microspheres by suspension polymerization in the presence of silver nanoparticles. Colloid Polym Sci 283(11):1172–1179. https://doi.org/10.1007/S00396-005-1300-Y

    Article  CAS  Google Scholar 

  22. Puišo J, Prosyčevas I, Guobienė A, Tamulevičius S (2008) Plasmonic properties of silver in polymer. Mater Sci Eng B 149(3):230–236. https://doi.org/10.1016/J.MSEB.2007.09.081

    Article  Google Scholar 

  23. Prosyčevas I, Puišo J et al (2007) Investigation of Silver Polymer Nanocomposites. Mater Sci 13(3):188–192

    Google Scholar 

  24. Puišo J, Adliene D, Guobiene A, Prosycevas I, Plaipaite-Nalivaiko R (2011) Modification of Ag-PVP nanocomposites by gamma irradiation. Mater Sci Eng B 176(19):1562–1567. https://doi.org/10.1016/J.MSEB.2011.05.003

    Article  Google Scholar 

  25. Essawy HA, Moustafa AB et al (2016) Pickering emulsion polymerization of styrene using nano-SiO2 and subsequent use of the produced core-shell structures as fillers for ethylene vinyl acetate copolymer and polypropylene. Poly-Plas Tech and Eng 55(11):1124–1130. https://doi.org/10.1080/03602559.2015.1132446

    Article  CAS  Google Scholar 

  26. Deepak SS, Kumar A et al (2019) Developing a nontoxic and biocompatible polymeric self-assembly by using RAFT methodology for biomedical application. Mater Today Commun 18:14–24. https://doi.org/10.1016/J.MTCOMM.2018.10.021

    Article  CAS  Google Scholar 

  27. Singh P, Srivastava A, Kumar R (2015) Synthesis and characterization of nano micelles of poly(N-acrylamidohexanoic acid)-b-poly(N-vinylcaprolactam) via RAFT process: solubilizing and releasing of hydrophobic molecules. Polymer 57:51–61. https://doi.org/10.1016/J.POLYMER.2014.12.011

    Article  CAS  Google Scholar 

  28. Singh P, Srivastava A, Kumar R (2014) Nanoporous well-defined reversible addition–fragmentation chain transfer polymer of N-acrylamido-l-tryptophan: synthesis and characterization. Polym Int 63(4):633–645. https://doi.org/10.1002/PI.4549

    Article  CAS  Google Scholar 

  29. Srivastava A, Singh P, Kumar R, Verma SK, Kharwar RN (2013) Indole-based polymer and its silver nanocomposite as advanced antibacterial agents: synthetic path, kinetics of polymerization and applications. Polym Int 62(2):210–218. https://doi.org/10.1002/PI.4283

    Article  CAS  Google Scholar 

  30. Singh P, Srivastava A, Kumar R (2012) Synthesis of amphiphilic poly(N-vinylcaprolactam) using ATRP protocol and antibacterial study of its silver nanocomposite. J Polym Sci A Polym Chem 50(8):1503–1514. https://doi.org/10.1002/POLA.25911

    Article  CAS  Google Scholar 

  31. Nandy K, Srivastava A, Afgan S et al (2020) The benzyl ethyl trithiocarbonate mediated control synthesis of a block copolymer containing N-vinyl pyrrolidone by RAFT methodology: Influence of polymer composition on cell cytotoxicity and cell viability. Eur Polym J 122:109387. https://doi.org/10.1016/J.EURPOLYMJ.2019.109387

    Article  CAS  Google Scholar 

  32. Perrier S (2017) 50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules 50(19):7433–7447. https://doi.org/10.1021/ACS.MACROMOL.7B00767

    Article  CAS  Google Scholar 

  33. Wang Y, Yang F, Yang XR (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25(8):1994–1998. https://doi.org/10.1016/J.BIOS.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  34. Badawy AA, Ghanem AF, Yassin MA, Youssef AM, Rehim MHA (2021) Utilization and characterization of cellulose nanocrystals decorated with silver and zinc oxide nanoparticles for removal of lead ion from wastewater. Environ Nanotechnol Monitor Manag 16:100501. https://doi.org/10.1016/j.enmm.2021.100501

    Article  CAS  Google Scholar 

  35. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360. https://doi.org/10.1016/J.ETAP.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  36. Limbong D, Kumampung J, Rimper J, Arai T, Miyazaki N (2003) Emissions and environmental implications of mercury from artisanal gold mining in North Sulawesi. Indonesia The Sci Total Environ 302(1–3):227–236. https://doi.org/10.1016/S0048-9697(02)00397-2

    Article  CAS  PubMed  Google Scholar 

  37. Du J, Jiang L, Shao Q et al (2013) Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 9:1467–1481. https://doi.org/10.1002/SMLL.201200811

    Article  CAS  PubMed  Google Scholar 

  38. Guzzi G, La Porta CA (2008) Molecular mechanisms triggered by mercury. Toxicology 244(1):1–12. https://doi.org/10.1016/J.TOX.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  39. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130(11):3244–3245. https://doi.org/10.1021/JA076716C

    Article  CAS  PubMed  Google Scholar 

  40. Wei T, Dong T, Wang Z, Bao J, Tu W, Dai Z (2015) Aggregation of individual sensing units for signal accumulation: conversion of liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis. J Am Chem Soc 137(28):8880–8883. https://doi.org/10.1021/JACS.5B04348

    Article  CAS  PubMed  Google Scholar 

  41. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int 47(21):3927–3931. https://doi.org/10.1002/ANIE.200705991

    Article  CAS  Google Scholar 

  42. Dinda D, Shaw BK, Saha SK (2015) Thymine functionalized graphene oxide for fluorescence “turn-off-on” sensing of Hg2+ and I in aqueous medium. ACS Appl Mater Interfaces 7(27):14743–14749. https://doi.org/10.1021/ACSAMI.5B02603

    Article  CAS  PubMed  Google Scholar 

  43. Liu M, Wang Z, Zong S et al (2014) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl Mater Interfaces 6(10):7371–7379. https://doi.org/10.1021/AM5006282

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Zheng J, Fang L et al (2012) Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 89:280–285. https://doi.org/10.1016/J.TALANTA.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  45. Ren W, Zhu C, Wang E (2012) Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4(19):5902–5909. https://doi.org/10.1039/C2NR31410J

    Article  CAS  PubMed  Google Scholar 

  46. Suherman AL, Ngamchuea K, Tanner EEL et al (2017) Electrochemical detection of ultratrace (picomolar) levels of Hg 2+ using a silver nanoparticle-modified glassy carbon electrode. Anal Chem 89(13):7166–7173. https://doi.org/10.1021/ACS.ANALCHEM.7B01304

    Article  CAS  PubMed  Google Scholar 

  47. Eksin E, Erdem A, Fafal T, Kıvçak B (2019) Eco-friendly sensors developed by herbal based silver nanoparticles for electrochemical detection of mercury (II) ion. Electroanalysis 31(6):1075–1082. https://doi.org/10.1002/ELAN.201800776

    Article  CAS  Google Scholar 

  48. Sato T, Ishida Y, Kameyama A (2014) RAFT homopolymerization of vinylbenzyl chloride with benzyl ethyl trithiocarbonate and synthesis of block copolymers from poly(VBC) macro-RAFT agent and N-isopropylacrylamide. Polym J 46(4):239–242. https://doi.org/10.1038/pj.2013.8557

    Article  CAS  Google Scholar 

  49. Kassaee MZ, Mohammadkhani M, Akhavan A, Mohammadi R (2011) In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct Chem 22(1):11–15. https://doi.org/10.1007/S11224-010-9671-1

    Article  CAS  Google Scholar 

  50. Dey D, Banerjee P (2019) Toxic organic solvent adsorption by a hydrophobic covalent polymer. New J Chem 43(9):3769–3777. https://doi.org/10.1039/C8NJ06249H

    Article  CAS  Google Scholar 

  51. Weber J, Zittau/G¨orlitz H, Meng QB (2014) Encyclopedia of polymer science and technology, 4th edn. John Wiley & Sons Ltd, New York

    Google Scholar 

  52. Pal T, Sau TK, Jana NR (1997) Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media†. Langmuir 13(6):1481–1485. https://doi.org/10.1021/LA960834O

    Article  CAS  Google Scholar 

  53. Abyaneh MK, Jafarkhani S, Kulkarni SK (2011) Electrical transport behaviour of silver– PMMA nanocomposite films at low temperature. J Exp Nanosci 6(2):159–173. https://doi.org/10.1080/17458080.2010.487224

    Article  CAS  Google Scholar 

  54. Siddiqui MN, Redhwi HH et al (2015) Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J 72:256–269

    Article  CAS  Google Scholar 

  55. Rastogi PK, Ganesan V, Krishnamoorthi S (2012) Microwave assisted polymer stabilized synthesis of silver nanoparticles and its application in the degradation of environmental pollutants. Mater Sci Eng B 177(6):456–461. https://doi.org/10.1016/J.MSEB.2012.02.012

    Article  CAS  Google Scholar 

  56. Chitte HK, Bhat NV, Karmakar NS et al (2012) Synthesis and characterization of polymeric composites embeded with silver nanoparticles. World j nano sci eng 2(1):19–24. https://doi.org/10.4236/WJNSE.2012.21004

    Article  CAS  Google Scholar 

  57. Lad U, Kale GM, Bryaskova R (2013) Glucose oxidase encapsulated polyvinyl alcohol-silica hybrid films for an electrochemical glucose sensing electrode. Anal Chem 85(13):6349–6355. https://doi.org/10.1021/AC400719H

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. https://doi.org/10.1021/ES204531Y

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Zhang K, Ma H (2009) Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. Anal Biochem 387(1):13–19. https://doi.org/10.1016/J.AB.2008.10.043

    Article  CAS  PubMed  Google Scholar 

  60. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TP (2005) Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17(1):9–12. https://doi.org/10.1021/CM0485963

    Article  CAS  Google Scholar 

  61. Çavuş S, Yıldıran M (2016) Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) gel electrolytes: a detailed investigation of their conductivity and characterization. Ionics 22(7):1059–1073. https://doi.org/10.1007/S11581-016-1649-6

    Article  Google Scholar 

  62. Rastogi PK, Krishnamoorthi S, Ganesan V (2012) Synthesis, characterization, and ion exchange voltammetry study on 2-acrylamido-2-methylpropane sulphonic acid and N-(hydroxymethyl) acrylamide-based copolymer. J Appl Polym Sci 123(2):929–935. https://doi.org/10.1002/APP.34538

    Article  CAS  Google Scholar 

  63. Yadav DK, Ganesan V, Marken F, Gupta R, Sonkar PK (2016) Metal@MOF materials in electroanalysis: silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework—Ag@MOF-5(Zn). Electrochim Acta 219:482–491. https://doi.org/10.1016/J.ELECTACTA.2016.10.009

    Article  CAS  Google Scholar 

  64. Wei Y, Yang R, Liu JH, Huang XJ (2013) Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223. https://doi.org/10.1016/J.ELECTACTA.2013.05.004

    Article  CAS  Google Scholar 

  65. Agraz R, Sevilla MT, Hernandez L (1995) Voltammetric quantification and speciation of mercury compounds. J Electroanal Chem 390(1–2):47–57. https://doi.org/10.1016/0022-0728(95)03955-G

    Article  Google Scholar 

  66. Wagh AS, Singh D, Jeong SY (2000) Mercury stabilization in chemically bonded phosphate ceramics. United States. https://www.osti.gov/servlets/purl/754481.

  67. Suherman AL, Kuss S, Tanner EEL, Young NP, Compton RG (2018) Electrochemical Hg2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst 143(9):2035–2041. https://doi.org/10.1039/C8AN00508G

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Institute of Eminence (Scheme No. 6031) program of Banaras Hindu University and UGC New Delhi (F. No. 42-387/2013 (SR)). Further, the authors are also thankful to IIT Kanpur for XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arti Srivastava, Rajesh Kumar or Vellaichamy Ganesan.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, K., Srivastava, A., Afgan, S. et al. Trithiocarbonate-mediated RAFT synthesis of a block copolymer: Silver nanoparticles integration and sensitive recognition of Hg2+. Polym. Bull. 80, 4061–4083 (2023). https://doi.org/10.1007/s00289-022-04239-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04239-6

Keywords

Navigation