Skip to main content
Log in

Evaluation of the compressible regular solution model predictions via rheologically determined phase diagram for polyvinylchloride/polycaprolactone blend

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper focuses on the theoretical and experimental phase behavior determination of polyvinylchloride/polycaprolactone (PVC/PCL) blend. For this aim, the capability of the compressible regular solution (CRS) model to predict the phase behavior of the PVC/PCL blend was evaluated. The extreme sensitivity of the CRS model to the solubility parameters of the blend components and the lack of a unique value for the solubility parameters of each polymer led to various phase behavior predictions from upper critical solution temperature to complete immiscibility. To verify the CRS model predictions, dilute solution viscometry (DSV), Fourier transform infrared and differential scanning calorimetry were employed. The last two showed complete miscibility, while different DSV criteria indicated partial miscibility, which were in contrast to the predictions made by the CRS model. Finally, the dynamic phase diagram of the PVC/PCL blend was determined via rheological measurements for the first time, suggesting lower critical solution temperature behavior with the critical point located at 195 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Laukaitiene A, Jankauskaite V, Zukiene K, Norvydas V, Munassipov S, Janakhmetov U (2013) Investigation of polyvinyl chloride and thermoplastic polyurethane waste blend miscibility. Mater Sci 19:397–402

    Google Scholar 

  2. Fashandi H, Karimi M (2014) Influence of solvent/polymer interaction on miscibility of PMMA/PCL blend: thermal analysis approach. Text Polym 2:71–78

    Google Scholar 

  3. White RP, Lipson JEG, Higgins JS (2012) How pure components control polymer blend miscibility. Macromolecules 45(21):8861–8871. https://doi.org/10.1021/ma3018124

    Article  CAS  Google Scholar 

  4. Kuo SW, Lin CL, Chang FC (2002) Phase behavior and hydrogen bonding in ternary polymer blends of phenolic resin/poly(ethylene oxide)/poly(e-caprolactone). Macromolecules 35:278–285

    Article  CAS  Google Scholar 

  5. Keshavarz L, Khansary MA, Shirazian S (2015) Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: theoretical calculation and experimental validation. Polymer 73:1–8. https://doi.org/10.1016/j.polymer.2015.07.027

    Article  CAS  Google Scholar 

  6. Ruzette AVG, Mayes AM (2001) A Simple free energy model for weakly interacting polymer blends. Macromolecules 34(6):1894–1907. https://doi.org/10.1021/ma000712+

    Article  CAS  Google Scholar 

  7. Clark EA, Lipson JEG (2012) LCST and UCST behavior in polymer solutions and blends. Polymer 53(2):536–545. https://doi.org/10.1016/j.polymer.2011.11.045

    Article  CAS  Google Scholar 

  8. Panuganti SR, Tavakkoli M, Vargas FM, Gonzalez DL, Chapman WG (2013) SAFT model for upstream asphaltene applications. Fluid Ph Equilib 359:2–16. https://doi.org/10.1016/j.fluid.2013.05.010

    Article  CAS  Google Scholar 

  9. Yeganeh JK, Goharpey F, Foudazi R (2014) Anomalous phase separation behavior in dynamically asymmetric LCST polymer blends. RSC Adv 4(25):12809. https://doi.org/10.1039/c3ra47299j

    Article  CAS  Google Scholar 

  10. Li H, Zhang Y, Jiacuo Y, Shang Y, Huo H, Jiang Sh (2012) Miscibility and rheologically determined phase diagram of poly(ethylene oxide)/poly(e-caprolactone) blends. Polym Bull 68:1405–1423

    Article  CAS  Google Scholar 

  11. Lyu Y, Pang J, Gao Z, Zhang Q, Shi X (2019) Characterization of the compatibility of PVC/PLA blends by aid of rheological responses. Polymer 176:20–29

    Article  CAS  Google Scholar 

  12. Niu YH, Wang ZG (2006) Rheologically determined phase diagram and dynamically investigated phase separation kinetics of polyolefin blends. Macromolecules 39:4175–4183

    Article  CAS  Google Scholar 

  13. Zou F, Dong X, Liu W, Yang J, Lin D, Liang A, Li W, Han CH (2012) Shear induced phase boundary shift in the critical and off-critical regions for a polybutadiene/polyisoprene blend. Macromolecules 45:1692–1700

    Article  CAS  Google Scholar 

  14. Chen H-L, Li L-J, Lin T-L (1998) Formation of segregation morphology in crystalline/amorphous polymer blends: molecular weight effect. Macromolecules 31(7):2255–2264. https://doi.org/10.1021/ma9715740

    Article  CAS  Google Scholar 

  15. Mamun Al, Mareau VH, Chen J, Prud’homme RE (2014) Morphologies of miscible PCL/PVC blends confined in ultrathin films. Polymer 55(9):2179–2187. https://doi.org/10.1016/j.polymer.2014.03.010

    Article  CAS  Google Scholar 

  16. Rusu M, Ursu M, Rusu D (2006) Poly(vinyl chloride) and poly(e-caprolactone) blends for medical use. Thermoplast Compos Mater 19:173–190

    Article  CAS  Google Scholar 

  17. Yang X, Xiong Y, Guo S (2020) Effect of liquid plasticizers on crystallization of PCL in soft PVC/PCL/plasticizer blends. J Appl Polym Sci 137(24):48803. https://doi.org/10.1002/app.48803

    Article  CAS  Google Scholar 

  18. Sun Z, Choi B, Feng A, Moad G, Thang SH (2019) Nonmigratory poly (vinyl chloride)-block-polycaprolactone plasticizers and compatibilizers prepared by sequential RAFT and ring-opening polymerization (RAFT-T̵-ROP). Macromolecules 52(4):1746–1756

    Article  CAS  Google Scholar 

  19. Nguyen-Tri P, Carrière P, Duong A, Nanda S (2020) Graphene oxide-induced interfacial transcrystallization of single-fiber milkweed/polycaprolactone/polyvinylchloride composites. ACS Omega 5(35):22430–22439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Imran Khan M, Zagho MM, Shakoor RA (2017) A Brief overview of shape memory effect in thermoplastic polymers. In: Ponnamma D, Sadasivuni KK, Cabibihan J-J, Al-Maadeed M A-A (eds) Smart polymer nanocomposites. Springer International Publishing, Cham, pp 281–301. https://doi.org/10.1007/978-3-319-50424-7_10

    Chapter  Google Scholar 

  21. Pekdemir ME, Öner E, Kök M, Qader IN (2021) Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iran Polym J 30(6):633–641

    Article  CAS  Google Scholar 

  22. Liu W, Zhang R, Huang M, Dong X, Xu W, Ray N, Zhu J (2016) Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104:115–122

    Article  CAS  Google Scholar 

  23. Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly-ɛ-caprolactone by means on compatible polymer mixtures. J Polym Sci Part A-2 Polym Phys 7(5):795–807. https://doi.org/10.1002/pol.1969.160070505

    Article  CAS  Google Scholar 

  24. Khambatta FB, Warner F, Russell T, SteinR S (1976) Small-angle X-ray and light scattering studies of the morphology of blends of poly(e-caprolactone) with poly(vinylChloride). Polym Sci 14:1391–1424

    CAS  Google Scholar 

  25. Klee D, Höcker H (2000) Advances in polymer science: biomedical applications/polymer blends. Springer, s.l.

    Google Scholar 

  26. Ong CJ, Price FP (2007) Blends of poly(ϵ-caprolactone) with poly(vinyl chloride). I. morphology. J Polym Sci Polym Symp 63(1):45–58. https://doi.org/10.1002/polc.5070630108

    Article  Google Scholar 

  27. Ong CJ, Price FP (2007) Blends of poly(ϵ-caprolactone) with poly(vinyl chloride). II. crystallization kinetics. J Polym Sci Polym Symp 63(1):59–75. https://doi.org/10.1002/polc.5070630109

    Article  Google Scholar 

  28. Russell TP, Stein RS (1983) An investigation of the compatibility and morphology of semicrystalline poly(ɛ-caprolactone)–poly(vinyl chloride) blends. J Polym Sci Polym Phys Ed 21(7):999–1010. https://doi.org/10.1002/pol.1983.180210701

    Article  CAS  Google Scholar 

  29. Robeson LM (1973) Crystallization kinetics of poly-ɛ-caprolactone from poly-ɛ-caprolactone/poly(vinyl chloride) solutions. J Appl Polym Sci 17(12):3607–3617. https://doi.org/10.1002/app.1973.070171205

    Article  Google Scholar 

  30. Haiyang Y, Pingping Z, Shiqiang W, Yiming Z, Qipeng G (1998) Viscometric study of polymer–polymer interactions in ternary systems—II. The influence of solvent. Eur Polym J 34(9):1303–1308. https://doi.org/10.1016/S0014-3057(97)00260-7

    Article  Google Scholar 

  31. Olabisi O (1975) Polymer compatibility by gas-liquid chromatography. Macromolecules 8:316–322

    Article  CAS  Google Scholar 

  32. Natansohn A (1985) Exothermal effect of phase separation in miscible polymer blends. Polym Sci 23:305–308

    CAS  Google Scholar 

  33. Bustamante P, Navarro-Lupion J, Escalera B (2005) A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. Eur J Pharm Sci 24:229–237

    Article  CAS  PubMed  Google Scholar 

  34. Mei S, Xiao C, Hu X (2012) Interfacial microvoid formation of poly(vinyl chloride)/polyacrylonitrile blend hollow-fiber membranes. Appl Polym Sci 124:E9–E16

    Article  CAS  Google Scholar 

  35. Sun Z, Wang W, Feng Z (1992) Criterion of polymer-polymer miscibility determined by viscometry. Eur Polym J 28(10):1259–1261. https://doi.org/10.1016/0014-3057(92)90215-N

    Article  CAS  Google Scholar 

  36. Brunchi CE, Bercea M, Morariu S (2010) Hydrodynamic properties of polymer mixtures in solution. Chem Eng Data 55:4399–4405

    Article  CAS  Google Scholar 

  37. Kapnistos M, Vlassopoulos D, Anastasiadis SH (1996) Determination of both the binodal and the spinodal curves in polymer blends by shear rheology. Europhys Lett 34:513–518

    Article  CAS  Google Scholar 

  38. Ajji A, Choplin L (1991) Rheology and dynamics near phase separation in a polymer blend: model and scaling analysis. Macromolecules 24:5221–5223

    Article  CAS  Google Scholar 

  39. Naziri AA, Khonakdar HA, Hemmati F, Jafari SH, Ehsani M (2019) Rheologically determined phase diagram of poly (ε-caprolactone)/poly (styrene-co-acrylonitrile) blends: role of ramp rate in dynamic measurements. J Appl Polym Sci 136(28):47750

    Article  Google Scholar 

  40. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers. Elsevier, Fourth. s.l.

    Book  Google Scholar 

  41. Utrachi LA, Wilkie CA (2014) Polymer blends hand book. Springer, London

    Book  Google Scholar 

  42. Pingping Z, Haiyang Y, Shiqiang W (1998) Viscosity behavior of poly(caprolactone) (PCL)/poly(vinyl chloride)(PVC) blends in various solvents. Eur Polym J 34:91–94

    Article  Google Scholar 

  43. Pandey M, Joshi GM, Mukherjee A, Thomas P (2016) Electrical properties and thermal degradation of poly (vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites. Polym Int 65(9):1098–1106

    Article  CAS  Google Scholar 

  44. Bulla SS, Bhajantri RF, Chavan C, Sakthipandi K (2021) Synthesis and characterization of polythiophene/zinc oxide nanocomposites for chemiresistor organic vapor-sensing application. J Polym Res 28(7):1–21

    Article  Google Scholar 

  45. Ramesh S, Leen KH, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 66(4–5):1237–1242. https://doi.org/10.1016/j.saa.2006.06.012

    Article  CAS  Google Scholar 

  46. Abdelrazek EM, Hezma AM, El-Khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3(1):10–15

    Google Scholar 

  47. Coleman MM, Zarian J (1979) Fourier-transform infrared studies of polymer blends. II. Poly(ε-caprolactone)–poly(vinyl chloride) system. J Polym Sci Polym Phys Ed 17(5):837–850. https://doi.org/10.1002/pol.1979.180170509

    Article  CAS  Google Scholar 

  48. Bélorgey G, Aubin M, Prud’homme RE (1982) Studies of polyester/chlorinated poly(vinyl chloride) blends. Polymer 23(7):1051–1056. https://doi.org/10.1016/0032-3861(82)90407-4

    Article  Google Scholar 

  49. Chiu FC, Min K (2000) Miscibility, morphology and tensile properties of vinyl chloride polymer and poly(ε-caprolactone) blends. Polym Int 49:223–234

    Article  CAS  Google Scholar 

  50. Wang J, Cheung MK, Mi Y (2002) Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4vinylphenol) as studied by DSC, FTIR, and Csolid state NMR. Polymer 43:1357–1364

    Article  CAS  Google Scholar 

  51. Gharachorlou A, Goharpey F (2008) Rheologically determined phase behavior of LCST blends in the presence of spherical nanoparticles. Macromolecules 41(9):3276–3283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Maghsoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raftari, R., Maghsoud, Z. Evaluation of the compressible regular solution model predictions via rheologically determined phase diagram for polyvinylchloride/polycaprolactone blend. Polym. Bull. 80, 3227–3246 (2023). https://doi.org/10.1007/s00289-022-04212-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04212-3

Keywords

Navigation