Skip to main content
Log in

Improving adhesion between acrylonitrile-butadiene rubber and glass fiber cord by covalent bonding and secondary polar interactions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Adhesion promoting systems based on 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane, hexamethylenetetramine, m-aminophenol, and silica were added into acrylonitrile-butadiene rubber (NBR) compounds to facilitate improved adhesion to a glass fiber cord. The kinetics of sulfur vulcanization, static and dynamic mechanical properties, surface energy, and adhesion to a glass fiber cord of the rubber compounds were studied. The addition of the adhesion promoters significantly influenced compounds' vulcanization, which resulted in significantly changed mechanical properties of the vulcanizates, while the dynamic properties were impacted only slightly. The surface energy measurement results were not in line with the final adhesion test results, which were most likely caused by the effect of acrylonitrile monomer units of NBR orientation toward the bulk of the compound. In consequence, the results indicated a lowering of the surface energy of the samples containing the adhesion promoters, whereas the pull-out test of the glass cord showed a significant improvement of the compounds' adhesion. The most effective adhesion-promoting system consisted of hexamethylenetetramine, m-aminophenol, and silica resulting in an over 300% increase of the adhesion force in comparison to unmodified NBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Tamada R, Shiraishi M (2017) Prediction of uneven tire wear using wear progress simulation. Tire Sci Technol 45:87–100. https://doi.org/10.2346/tire.17.450201

    Article  Google Scholar 

  2. Wennekes WB, Datta RN, Noordermeer JW, Elkink F (2008) Fiber adhesion to rubber compounds. Rubber Chem Technol 81:523–540. https://doi.org/10.5254/1.3548218

    Article  CAS  Google Scholar 

  3. Dierkes W, Louis A, Noordermeer JW, Blume A (2019) A novel approach of promoting adhesion of reinforcing cord to elastomers by plasma polymerization. Polymers 11:577. https://doi.org/10.3390/polym11040577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Xiao T, Zhao S (2016) Effects of surface treatments on mechanical properties of continuous basalt fibre cords and their adhesion with rubber matrix. Fiber Polym 17:910–916. https://doi.org/10.1007/s12221-016-5928-7

    Article  CAS  Google Scholar 

  5. Soltani S, Naderi G, Mohseniyan S (2014) Mechanical, morphological and rheological properties of short nylon fiber reinforced acrylonitrile-butadiene rubber composites. Fiber Polym 15:2360–2369. https://doi.org/10.1007/s12221-014-2360-8

    Article  CAS  Google Scholar 

  6. Gozdek T, Chudzik J, Imiela M, Bielinski DM (2019) The influence of the addition of ionic liquids on the properties of rubber-coated fabrics filled with layered fillers. Polimery 64(9):609–615. https://doi.org/10.14314/polimery.2019.9.6

    Article  CAS  Google Scholar 

  7. Sruthi PR, Anas S (2020) An overview of synthetic modification of nitrile group in polymers and applications. J Polym Sci 58:1039–1061. https://doi.org/10.1002/pol.20190190

    Article  CAS  Google Scholar 

  8. Rajesh C, Unnikrishnan G, Purushothaman E (2008) Investigation of interfacial adhesion in nylon-6 fibre/NBR composites through restricted equilibrium swelling technique. Compos Interface 15:527–548. https://doi.org/10.1163/156855408784655274

    Article  CAS  Google Scholar 

  9. Jincheng W, Yuehui C, Zhaoqun D (2005) Research on the adhesive property of polyethylene terephthalate (PET) cord and nitrile-butadiene rubber (NBR) system. J Ind Text 35:157–172. https://doi.org/10.1177/1528083705057576

    Article  CAS  Google Scholar 

  10. Rathinasamy P, Balamurugan P, Balu S, Subrahmanian V (2004) Effect of adhesive-coated glass fiber in natural rubber (NR), acrylonitrile rubber (NBR), and ethylene–propylene–diene rubber (EPDM) formulations. I. Effect of adhesive-coated glass fiber on the curing and tensile properties of NR, NBR, and EPDM formulations. J Appl Polym Sci 91:1111–1123. https://doi.org/10.1002/app.13175

    Article  CAS  Google Scholar 

  11. Wisittanawat U, Thanawan S, Amornsakchai T (2014) Mechanical properties of highly aligned short pineapple leaf fiber reinforced: nitrile rubber composite—effect of fiber content and bonding agent. Polym Test 35:20–27. https://doi.org/10.1016/j.polymertesting.2014.02.003

    Article  CAS  Google Scholar 

  12. Ono Y, Tanigakl T, Tanino K, Dobashi S, Hashizume G (1994) Mixing effect on reinforcement of short ramie and linen fiber/carboxylated acrylonitrile-butadiene rubber composites. Kobunshi Ronbunshu 51:530–539. https://doi.org/10.1295/koron.51.530

    Article  CAS  Google Scholar 

  13. da Rocha EBD, de Sousa AMF, Furtado CRG (2020) Properties Investigation of novel nitrile rubber composites with rockwool fibers. Polym Test 82:106291. https://doi.org/10.1016/j.polymertesting.2019.106291

    Article  CAS  Google Scholar 

  14. Pape PG (2011) Adhesion promoters: silane coupling agents. In: Kutz M (ed) Applied Plastics Engineering Handbook, 2nd edn. William Andrew Publishing, New York, pp 503–517

    Chapter  Google Scholar 

  15. Ishida H, Koenig JL (1978) Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber. J Colloid Interface Sci 64:565–576. https://doi.org/10.1016/0021-9797(78)90399-5

    Article  Google Scholar 

  16. Park S-J, Jin J-S, Lee J-R (2000) Influence of silane coupling agents on the surface energetics of glass fibers and mechanical interfacial properties of glass fiber-reinforced composites. J Adhes Sci Technol 14:1677–1689. https://doi.org/10.1163/156856100742483

    Article  CAS  Google Scholar 

  17. Bernal-Ortega P, Anyszka R, Morishita Y, di Ronza R, Blume A (2021) Comparison between SBR compounds filled with in-situ and ex-situ silanized silica. Polymers 13:281. https://doi.org/10.3390/polym13020281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JT, Lee DY, Oh TS, Lee DH (2003) Characteristics of nitrile–butadiene rubber layered silicate nanocomposites with silane coupling agent. J Appl Polym Sci 89:2633–2640. https://doi.org/10.1002/app.12169

    Article  CAS  Google Scholar 

  19. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. https://doi.org/10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  20. Varghese S, Karger-Kocsis J, Gatos KG (2003) Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer 44:3977–3983. https://doi.org/10.1016/S0032-3861(03)00358-6

    Article  CAS  Google Scholar 

  21. López-Manchado MA, Arroyo M, Herrero B, Biagiotti J (2003) Vulcanization kinetics of natural rubber-organoclay nanocomposites. J Appl Polym Sci 89:1–15. https://doi.org/10.1002/app.12082

    Article  CAS  Google Scholar 

  22. Hosseini SM, Razzaghi-Kashani M (2014) Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 55:6426–6434. https://doi.org/10.1016/j.polymer.2014.09.073

    Article  CAS  Google Scholar 

  23. Sterman S, Marsden JG (1966) Silane coupling agents. Ind Eng Chem 58:33–37. https://doi.org/10.1021/ie50675a010

    Article  CAS  Google Scholar 

  24. He X, Rytöluoto I, Anyszka R, Mahtabani A, Saarimäki E, Lahti K, Paajanen M, Dierkes W, Blume A (2020) Silica surface-modification for tailoring the charge trapping properties of PP/POE based dielectric nanocomposites for HVDC cable application. IEEE Access 8:87719–87734. https://doi.org/10.1109/ACCESS.2020.2992859

    Article  Google Scholar 

  25. Sato M (2018) Reinforcing Mechanisms of Silica/Sulfide-Silane versus Mercapto-Silane Filled Tire Tread Compounds. Dissertation, University of Twente

  26. Song Y, Zheng Q (2016) Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog Mater Sci 84:1–58. https://doi.org/10.1016/j.pmatsci.2016.09.002

    Article  CAS  Google Scholar 

  27. Najam M, Hussain M, Ali Z, Maafa IM, Akhter P, Majeed K, Ahmed A, Shehzad N (2020) Influence of silica materials on synthesis of elastomer nanocomposites: a review. J Elastom Plast 52:747–771. https://doi.org/10.1177/0095244319888768

    Article  CAS  Google Scholar 

  28. Dierkes WK, Blume A (2015) Silica reinforcement. In: Kobayashi Shiro, Müllen Klaus (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 2222–2228. https://doi.org/10.1007/978-3-642-29648-2_307

    Chapter  Google Scholar 

  29. Song M, Wang X, Sizhu W, Qin Q, Guomin Y, Liu Z, Pei H, Zhang Y, Jiao M (2019) How the hindered amines affect the microstructure and mechanical properties of nitrile-butadiene rubber composites. e-Polymers 20(1):8–15. https://doi.org/10.1515/epoly-2020-0002

    Article  CAS  Google Scholar 

  30. Gruendken M, Velencoso MM, Koda D, Blume A (2021) Silane-modified low molecular weight ‘liquid’ polymers in sulfur cured mixtures of styrene-butadiene copolymers and silica. Polym Test 93:106997. https://doi.org/10.1016/j.polymertesting.2020.106997

    Article  CAS  Google Scholar 

  31. Chen Y, Peng Z, Kong LX, Huang MF, Li PW (2008) Natural rubber nanocomposite reinforced with nano silica. Polym Eng Sci 48:1674–1677. https://doi.org/10.1002/pen.20997

    Article  CAS  Google Scholar 

  32. Suzuki N, Ito M, Ono S (2005) Effects of rubber/filler interactions on the structural development and mechanical properties of NBR/silica composites. J Appl Polym Sci 95:74–81. https://doi.org/10.1002/app.20800

    Article  CAS  Google Scholar 

  33. Madeira DM, Vieira O, Pinheiro LA, de Melo CB (2018) Correlation between surface energy and adhesion force of polyethylene/paperboard: a predictive tool for quality control in laminated packaging. Int J Chem Eng 2018:2709037. https://doi.org/10.1155/2018/2709037

    Article  CAS  Google Scholar 

  34. Zheng W, Sun C, Bai B (2017) Molecular dynamics study on the effect of surface hydroxyl groups on three-phase wettability in oil-water-graphite systems. Polymers 9:370. https://doi.org/10.3390/polym9080370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagata K, Takahashi Y, Shibusawa S, Nakamura Y (2002) Interfacial structure in vulcanized EPDM filled with mercaptosilane-treated Al(OH)3 and its influence on the mechanical properties. J Adhes Sci Technol 16:1017–1026. https://doi.org/10.1163/156856102760146138

    Article  CAS  Google Scholar 

  36. Li Y, Li Z, Gao Y, Li L, Yang Y (2020) Influences of (3-aminopropyl)triethoxysilane on the tribological behaviors of basalt fiber/acrylonitrile-butadiene rubber composites under dry friction and water-lubricated conditions. J Appl Polym Sci 137:48558. https://doi.org/10.1002/app.48558

    Article  CAS  Google Scholar 

  37. Darwish NA, Lawandy SN, El-Shazly SA, Abou-Kandil AI (2000) Effect of bonding systems on the adhesion of nitrile rubber to nylon. Polym Plast Technol Eng 39:793–806. https://doi.org/10.1081/PPT-100101404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Union from the European Regional Development Fund under the Intelligent Development Operational Program. Project implemented as part of the National Center for Research and Development competition: Application Projects 4.1.4, project number POIR.04.01.04-00-0034/18 “Hybridgeowall”. The authors also would like to thank Dr. Klaus Werner Stöckelhuber and Prof. Sven Wiessner from Leibniz Institute of Polymer Research Dresden in Germany for the insightful discussion on the surface energy test results. Sincere thanks to Martyna Kościukiewicz for providing language help: https://www.linkedin.com/in/martyna-ko%C5%9Bciukiewicz/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafał Anyszka or Dariusz M. Bieliński.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anyszka, R., Bieliński, D.M., Siciński, M. et al. Improving adhesion between acrylonitrile-butadiene rubber and glass fiber cord by covalent bonding and secondary polar interactions. Polym. Bull. 80, 3197–3226 (2023). https://doi.org/10.1007/s00289-022-04198-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04198-y

Keywords

Navigation