Skip to main content
Log in

Chemical modification of TiO2 with essential oils for its application in active packaging

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The surface of titanium dioxide (TiO2) was chemically modified to take advantage of the functional groups of cinnamon essential oil (CEO) by two different proposed methods. The first one consisted basically in an impregnation (M1) and the second one by the addition of Tween 80 (M2). These particles were added to the polymeric matrix of PLA (polylactic acid), therefore were evaluated their chemical, mechanical and physical properties on particles and films. Inhibition to the free radical DPPH of 63.43% and 45.24% was obtained by the method 1 and 2, respectively, in order to confirm the antioxidant capability of modified particles. The effects of the modified particles on the polymer matrix indicated that the water vapor permeability was reduced, as well as the dissipation energy, furthermore solubility, contact angle and tensile strength and the elongation percentage were increased, getting as result more flexible films, nevertheless did not significantly modify the PLA structure and thickness of them. The films morphology through SEM showed that the modified particles were dispersed homogeneous without cracks or fissures. The analysis through of AFM indicated that the microstructure of the PLA surface was significantly affected when the particles were added. These results suggest that TiO2 and CEO can be used for the fabrication of active packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Javidi Z, Hosseini SF, Rezaei M (2016) Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT Food Sci Technol 72:251–260

    Article  CAS  Google Scholar 

  2. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262

    Article  CAS  PubMed  Google Scholar 

  3. Zhu JY, Tang CH, Yin SW, Yang XQ (2018) Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/pickering emulsions. Carbohydr Polym 181:727

    Article  CAS  PubMed  Google Scholar 

  4. Commission regulation (EU) (2011) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food

  5. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  6. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  7. Zhang B, Han J (2016) Preparation and UV protective property of PVAc/ZnO and PVAc/TiO2 microcapsules/poly (lactic acid) nanocomposites. Fibers Polym 17(11):1849–1857. https://doi.org/10.1007/s12221-016-6679-1

    Article  CAS  Google Scholar 

  8. Thaís MC, de Carvalho RA, Sobral PJ, Habitante AM, Solorza-Feria J (2008) The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. J Food Eng 87(2):191–199. https://doi.org/10.1016/j.jfoodeng.2007.11.026

    Article  CAS  Google Scholar 

  9. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles and antimicrobial study. Sci Technol Adv Mater 9(3):035004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xing Y et al (2012) Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog Org Coat 73(2–3):219–224

    Article  CAS  Google Scholar 

  11. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    Article  CAS  Google Scholar 

  12. Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12(5):1625–1636

    Article  CAS  Google Scholar 

  13. Espitia PJP et al (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Technol 5(5):1447–1464

    Article  CAS  Google Scholar 

  14. Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95

    Article  CAS  Google Scholar 

  15. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  16. Hou X, Xue Z, Liu J, Yan M, Xia Y, Ma Z (2019) Characterization and property investigation of novel eco-friendly agar/carrageenan/TiO2 nanocomposite films. J Appl Polym Sci 136(10):47113. https://doi.org/10.1002/app.47113

    Article  CAS  Google Scholar 

  17. EuropeanComission (2009) EU guidance to the commission regulation (EC) No. 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into the contact with food (Version 1.0)

  18. Carbonnel F (1998) Naturalmente esencial. Introducción a la aromaterapia. Barcelona: Martorell

  19. David K, Hill DC (2020) Química de los aceites esenciales. 2da. Edición. Do terra

  20. Hernandez MR, Hernández MDLPA, Almaraz MJ, Guevara MLL, Guevara JJL (2019) Evaluación de la capacidad antimicrobiana de aceites esenciales de orégano (Origanum vulgare), en fase de vapor sobre Salmonella entérica, en un emulsionado cárnico. Avances de investigación en inocuidad de alimentos, 2

  21. Burt S (2004) Essential oils: their antimicrobial properties and potential applications in food—a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  22. RuizRico M, PérezEsteve É, Barat JM (2018) Use of nanotechnology as an antimicrobial tool in the food sector: nanobiotechnology. CRC Press, pp 413–452

    Google Scholar 

  23. Khorshidian N, Yousefi M, Khanniri E, Mortazavian AM (2018) Potential application of essential oils as antimicrobial preservatives in cheese. Innov Food Sci Emerg Technol 45:62–72

    Article  CAS  Google Scholar 

  24. Teixeira B, Marques A, Pires C, Ramos C, Batista I, Saraiva JA, Nunes ML (2014) Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: physical, antioxidant and antibacterial properties. LWT Food Sci Technol 59:533–539

    Article  CAS  Google Scholar 

  25. Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A (2017) Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol 61:132–140

    Article  CAS  Google Scholar 

  26. Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62

    Article  Google Scholar 

  27. Kavoosi G, Rahmatollahi A, Dadfar SMM, Purfard AM (2014) Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT Food Sci Technol 57:556–561

    Article  CAS  Google Scholar 

  28. Food and drug administration, U.S.D. of H. and H.S. CFR-Code of federal regulations title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20 (Accessed on 27 Nov 2019)

  29. Friesen K, Chang C, Nickerson M (2015) Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: mechanical, barrier and cross-linking properties. Food Chem 172:18–23

    Article  CAS  PubMed  Google Scholar 

  30. Alizadeh-Sani M, Khezerlou A, Ehsani Ali (2018) Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Indus Crops Products 124:300–315 (ISSN 0926-6690)

    Article  CAS  Google Scholar 

  31. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN (2020) The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 157:743–751. https://doi.org/10.1016/j.ijbiomac.2019.11.244

    Article  CAS  PubMed  Google Scholar 

  32. Riahi Z, Priyadarshi R, Rhim J-W, Bagheri R (2021) Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.106314

    Article  Google Scholar 

  33. Jamuna K, Banu S, Brindha P, Kurian GA (2014) Nano-scale preparation of titanium dioxide by desmodium gangeticum root aqueous extract. Ceram Int 40:11933–11940

    Article  CAS  Google Scholar 

  34. Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano-and micro-ZrO2 and -TiO2 particles. Ecotoxicol Environ Saf 93:191–197

    Article  CAS  PubMed  Google Scholar 

  35. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  36. Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  37. Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physicalproperties. Int J Food Sci Technol 29:39–50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x

    Article  CAS  Google Scholar 

  38. Norma ASTM (2009) Standard test methods for water vapor transmission of materials. Philadelphia (EE.UU.): American society for testing and materials, 96–95

  39. Han Y, Wang L (2017) Sodium alginate/carboxymethyl cellulose films containing pyrogallic acid: physical and antibacterial properties. J Sci Food Agric 97:1295–1301

    Article  CAS  PubMed  Google Scholar 

  40. Shankar S, Wang L-F, Rhim J-W (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Msc. https://doi.org/10.1016/j.msec.2018.08.002

    Article  Google Scholar 

  41. ASTM D882–18 (2018) D882: standard test method fortensile properties of thin plastic sheeting. Astm 14:1–10

    Google Scholar 

  42. Boughendjioua H, Amoura N, Boughendjioua Z (2017) Purity specifications of constituents of cinnamon essential oil by fourier transformed infrared spectroscopy analysis. Indian J Pharm Biol 5(2):36–40

    Article  CAS  Google Scholar 

  43. Boughendjioua H (2014) Les plantes médicinales utilisées pour les soins de la peau, composition chimique, activité antioxydante et antimicrobienne des huiles essentielles de citrus limon, cinnamomum zeylanicum et thymus numidicus, doctorat en sciences spécialité : biologie végétale. Université Badji Moktar de Annaba 144:125–130

    Google Scholar 

  44. Shao P, Yu J, Chen H, Gao H (2021) Development of microcapsule bioactive paper loaded with cinnamon essential oil to improve the quality of edible fungi. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2020.100617

    Article  Google Scholar 

  45. Han Y, Miao Y, Wang L (2018) Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2017.11.001

    Article  Google Scholar 

  46. Zhang L, Huang C, Xu Y, Huang H, Zhao H, Wang J, Wang S (2020) Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int J Biol Macromol 1(164):4547–4555. https://doi.org/10.1016/j.ijbiomac.2020.09.065

    Article  CAS  Google Scholar 

  47. Majd M, Ghanbarzadeh B, Shahidi-Noghabi M et al (2020) Poly (lactic acid)-based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polym Bull. https://doi.org/10.1007/s00289-020-03490-z

    Article  Google Scholar 

  48. Kaur H, Rathore A, Raju S (2014) A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. Carbohydr Polym 21(9):537

    Google Scholar 

  49. Huang Y, Wang Y, Li Y, Luo C, Yang C, Shi W, Li L (2020) Covalent immobilization of polypeptides on polylactic acid films and their application to fresh beef preservation. J Agric Food Chem 68(39):10532–10541. https://doi.org/10.1021/acs.jafc.0c03922

    Article  CAS  PubMed  Google Scholar 

  50. Liu YP, Tourbin M, Lachaize S, Guiraud P (2012) Silica nanoparticle separation from water by aggregation with AlCl3. Ind Eng Chem Res 51(4):1853–1863

    Article  CAS  Google Scholar 

  51. López-Zamora L, Martínez-Martínez HN, González-Calderón JA (2018) Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2018.06.063

    Article  Google Scholar 

  52. Cazzola M, Ferraris S, Banche G, Gautier Di Confiengo G, Geobaldo F, Novara C, Spriano S (2020) Innovative coatings based on peppermint essential oil on titanium and steel substrates: chemical and mechanical protection ability. Materials 13(3):516. https://doi.org/10.3390/ma13030516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mohammadi M, Mirabzadeh S, Shahvalizadeh R, Hamishehkar H (2020) Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano formulated cinnamon oil. Int J Biol Macromol 15(149):11–20. https://doi.org/10.1016/j.ijbiomac.2020.01.083

    Article  CAS  Google Scholar 

  54. Yang C, Wang J, Qin Y (2019) Structural changes and nano-TiO2 migration of poly (lactic acid)-based food packaging film contacting with ethanol as food simulant. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.07.151

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fasihi H, Noshirvani N, Hashemi M, Fazilati M, Salavati H, Coma V (2019) Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by pickering emulsion method. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2018.12.007

    Article  Google Scholar 

  56. Ayala-Zavala JF, Silva-Espinoza BA, Cruz-Valenzuela MR, Leyva JM, Ortega- Ramírez LA, Carrazco-Lugo DK et al (2013) Pectin-cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach. Flavour Fragr J 28:39–45

    Article  CAS  Google Scholar 

  57. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    Article  CAS  PubMed  Google Scholar 

  58. Valenzuela C, Abugoch L, Tapia C (2013) Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT Food Sci Technol 50:531–537. https://doi.org/10.1016/j.lwt.2012.08.010

    Article  CAS  Google Scholar 

  59. Wang Z, Sun X-X, Lian Z-X, Wang X-X, Zhou J, Ma Z-S (2013) The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Arezoo Eng 114(2):183–191

    Article  CAS  Google Scholar 

  60. Almasi L, Radi M, Amiri S, McClements DJ (2021) Fabrication and characterization of antimicrobial biopolymer films containing essential oil-loaded microemulsions or nanoemulsions. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2021.106733

    Article  Google Scholar 

  61. Alizadeh-Sani M, Rhim J-W, Azizi-Lalabadi M, Hemmati-Dinarvand M, Ehsani A (2019) Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.004

    Article  PubMed  Google Scholar 

  62. Benavides S, Villalobos-Carvajal R, Reyes JE (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110(2):232–239. https://doi.org/10.1016/j.jfoodeng.2011.05.023

    Article  CAS  Google Scholar 

  63. Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47:168–177. https://doi.org/10.1016/j.foodhyd.2015.01.032

    Article  CAS  Google Scholar 

  64. Shaili T, Abdorreza MN, Fariborz N (2015) Functional, thermal, and antimicrobial proper-ties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr Polym 134:726–731

    Article  CAS  PubMed  Google Scholar 

  65. Lan W, Zhang R, Ahmed S, Qin W, Liu Y (2019) Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT Food Sci Technol 113:108297. https://doi.org/10.1016/j.lwt.2019.108297

    Article  CAS  Google Scholar 

  66. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and anti-microbial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crop Prod 130:450–458

    Article  CAS  Google Scholar 

  67. Heydari-Majd M, Ghanbarzadeh B, Shahidi-Noghabi M, Najafi MA, Hosseini M (2019) A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Pack Shelf Life. https://doi.org/10.1016/j.fpsl.2018.12.002

    Article  Google Scholar 

  68. González A, Igarzabal CIA (2013) Soy protein-Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll 33:289–296

    Article  Google Scholar 

  69. Javidi Z, Hosseini SF, Rezaei M (2016) Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT Food Sci Tech 72:251–260

    Article  CAS  Google Scholar 

  70. Jiang Y, Lan W, Sameen DE et al (2020) Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.05.202

    Article  PubMed  PubMed Central  Google Scholar 

  71. Salarbashi D, Tajik S, Shojaee-Aliabadi S, Ghasemlou M, Moayyed H, Khaksar R, Noghabi MS (2014) Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chem 146:614–622

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Liu Y, Yong H, Qin Y, Liu J, Liu J (2019) Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2019.03.009

    Article  Google Scholar 

  73. Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Jiménez A, Bourke P, Cullen PJ (2014) Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innov Food Sci Emerg Technol 21:107–113. https://doi.org/10.1016/j.ifset.2013.10.007

    Article  CAS  Google Scholar 

  74. Snowdon MR, Wu F, Mohanty AK, Misra M (2019) Comparative study of the extrinsic properties of poly (lactic acid)-based biocomposites filled with talc versus sustainable biocarbon. RSC Adv 9(12):6752–6761. https://doi.org/10.1039/c9ra00034h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ortega-Toro R, López-Córdoba A, Avalos-Belmontes F (2021) Epoxidised sesame oil as a biobased coupling agent and plasticiser in polylactic acid/thermoplastic yam starch blends. Heliyon 7(2):e06176. https://doi.org/10.1016/j.heliyon.2021.e06176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sudha GS, Kalita H, Mohanty S et al (2017) Biobased epoxy blends from epoxidized castor oil: effect on mechanical, thermal, and morphological properties. Macromol Res 25:420–430. https://doi.org/10.1007/s13233-017-5063-3

    Article  CAS  Google Scholar 

  77. Liu W, Qiu J, Zhu L, Fei M, Qiu R, Sakai E, Tang G (2018) Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly (lactic acid) via dynamic vulcanization. Polymer 148:109–118. https://doi.org/10.1016/j.polymer.2018.06.021

    Article  CAS  Google Scholar 

  78. Jbeli A, Ferraria AM, do Rego AMB, Boufi S, Bouattour S (2018) Hybrid chitosan-TiO2/ZnS prepared under mild conditions with visible-light driven photocatalytic activity. Int J Biol Macromol 116:1098–1104

    Article  CAS  PubMed  Google Scholar 

  79. Li W, Ding X, Wu H, Yang H (2018) In-situ hydrothermal synthesis of TiO2/Bi2WO6 heterojunction with enhanced photocatalytic activity. Mater Lett 88:92–100

    Article  Google Scholar 

  80. Chollakup R, Pongburoos S, Boonsong W, Khanoonkon N, Kongsin K, Sothornvit R, Sukyai P, Sukatta U, Harnkarnsujarit N (2020) Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT. https://doi.org/10.1016/j.lwt.2020.109573

    Article  Google Scholar 

  81. Ejaz M, Arfat YA, Mulla M, Ahmed J (2018) Zinc oxide nanorods/clove essential oil incorporated type B gelatin composite films and its applicability for shrimp packaging. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2017.12.004

    Article  Google Scholar 

  82. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity offish protein isolate/fish skin gelatin film containing basil leafessential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273

    Article  CAS  Google Scholar 

  83. Bagheri F, Radi M, Amiri S (2019) Drying conditions highly influence the characteristics of glycerol-plasticized alginate films. Food Hydrocoll 90:162–171. https://doi.org/10.1016/j.foodhyd.2018.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.A. Gonzalez-Calderon thanks to CONACYT for the support by the Catedras-Conacyt Program and Verónica Martinez thanks to CONACYT for the Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. González-Calderón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Aguilar, V., Coral Carrillo-Sanchez, P., Del Angel-Monroy, M. et al. Chemical modification of TiO2 with essential oils for its application in active packaging. Polym. Bull. 80, 2753–2778 (2023). https://doi.org/10.1007/s00289-022-04178-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04178-2

Keywords

Navigation